• Title/Summary/Keyword: Step Electrode

Search Result 314, Processing Time 0.03 seconds

A Study on the Characteristics of Circular Piezoelectric Transformer which has Crescent-shaped Input Type (Crescent-shaped Input Type 원형압전변압기의 특성 연구)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a new disk-type piezoelectric transformer. The input side of the transformer has a crescent-shaped electrode and the output side has a focused poling direction. The piezoelectric transformers operated in each transformer's resonance vibration mode. The electrodes and poling directions on commercially available piezoelectric ceramic disks were designed so that the planar or shear mode coupling factor $(k_p\;k_{15})$ becomes effective rather than the transverse mode coupling factor $(k_{31})$. ANSYS finite element code was used to analyze transformer behavior and to optimize electrode and poling configurations. The voltage step-up ratio of the proposed transformer has been markedly improved in comparison with that of the equivalent rectangular(Rosen) type. A single layer prototype transformer, $20\sim30mm$ in diameter and $1.0\sim3.5mm$ thick, was fabricated, such as step-up ratio, power transformation efficiency, and temperature were measured. While the transformer was driving a Cold Cathode Fluorescent Lamp(CCFL), the temperature field of the transformer was also observed.

Electric Characteristics of Disk-type Piezoelectric Transformer (디스크형 압전 변압기의 전기적 특성)

  • Kim, Dong-Soo;Kim, Kwang-Il;Kim, Heung-Rak;Jeong, Woo-Cheol;Nam, Hyo-Duk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1007-1013
    • /
    • 2005
  • In this study, a step-down piezoelectric transformer was fabricated to utilize as an adapter for charging batteries of mobile electronic appliances. The ceramic part of the transformer is $Pb[(Mn_{1/3}Sb_{2/3})_{_0.05}Zr_{0.475}Ti_{0.475}]O_3$ with mechanical quality factor of 1600, electromechanical coupling coefficient $59\%$, and piezoelectric constant $d_{33}$ 1300, which can be utilized as a piezoelectric transformer. A simply fabricated disk-typed test pattern of diameter 28 mm and thickness 2 mm was used to characterize output voltage, step-down ratio as a function of electrode area with the input remained constant, and power, efficiency as a function of input voltage, and temperature-dependent electric characteristics were evaluated. The sample APT1 showed the best properties. The highest admittance, effective electromechanical coupling coefficient and an appropriate mechanical quality factor were obtained at the sample with the input/output area ratio of 1:1.5 at the common electrode, and the condition of 20 $V_{rms}$, $50\;\Omega$ made the maximum efficiency of $95\%$. The temperature was increased by 14.7'E as the input voltage was increased for $50\;V_{rms},\;50\;\Omega$.

Characteristics and Fabrication of ZTO/Ag/ ZTO Multilayer Transparent Conducting Electrode

  • Cho, Se-Hee;Yang, Jeong-Do;Wei, Chang-Hwan;Pandeyd, Rina;Byun, Dong-Jin;Choia, Won-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.339-339
    • /
    • 2013
  • We study on the optical and electrical properties of indium-free ZTO(ZnSnO)/Ag/ZTO (ZAZ) multilayer electrodes for the low-cost transparent electrode. In the first step, each single layer was deposited using rf magnetron in-line sputter with various working pressure based on $O_2$/$Ar+O_2$ ratio (0~3%) and power at room temperature. Secondly, we studied the optical and electrical properties by analyzing the refractive index, extinction coefficient, transmittance and resistivity of each layer. Finally, we optimized the thickness of each layer using macleod simulation program based on the analyzed optical properties and fabricated the multilayer electrode. As a result, We achieved a low sheet resistance of $11{\Omega}$/sq and anaverage transmittance of 80% in the visible region of light (380~780 nm). This indicates that indium-free ZAZ multilayer electrode is a promising low-cost and low-temperature processing electrode scheme.

  • PDF

Structural and Electrical Properties of Nickel Hydroxide Electrode Prepared by Hydrothermal Synthesis on Nickel Foam (니켈 폼(Ni foam)에 수열 합성법으로 제조한 수산화니켈(Ni(OH)2) 전극의 구조적 및 전기적 특성)

  • Hyunjin Cha;Seokhee Lee;Jeonghwan Park;Young-Guk Son;Donghyun Hwang
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.5
    • /
    • pp.320-327
    • /
    • 2023
  • In this study, the nickel hydroxide (Ni(OH)2) electrode for supercapacitor was prepared via hydrothermal method. Based on the nickel (Ni) foam, the electrode does not require any additional binder material or post-processing. Nickel nitrate (Ni(NO3)2) and hexamethylenetetramine (C6H12N4) were used for synthesis, and the synthesis condition was 12 hours at 80 ℃. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) were used to analyze the structural characteristics of the electrode, and it shown that the nickel hydroxide was successfully prepared after only the one-step hydrothermal synthesis. The electrochemical properties were analyzed through the half-cell test. The prepared electrode shown a pair of oxidation/reduction peaks, indicating that the driving method included the redox reaction on the electrode surface. After the charge/discharge test, the specific capacitance was calculated as the value of 438 F/g at 3 A/g.

OLED용 Al 음전극 제작 및 I-V 특성

  • Geum Min-Jong;Gwon Gyeong-Hwan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.102-105
    • /
    • 2005
  • In this study Al electrode for OLED was deposited by FTS(Facing Targets Sputtering) system which can deposit thin films with low substrate damage. The Al thin films were deposited on the cell (LiF/EML/HTL/Bottom electrode) as a function of working gas such as Ar, Kr or mixed gas. Also Al thin films were prepared with working gas pressure (1, 6 mTorr ). The film thickness and I-V curve of Al/cell were evaluated by $\alpha$-step and semiconductor parameter (HP4156A) measurement.

  • PDF

Analyses of Hazard Voltages According to the Buried Depth of Small-sized Model Grounding Electrode (축소형 모델 접지전극의 매설깊이에 따른 위험전압의 분석)

  • Paek, Young-Hwan;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.56-61
    • /
    • 2009
  • This paper presents the ground surface potential profiles and hazard voltages around the metallic structure connected to a small-sized model ground electrode. Because it is very difficult to draw valid conclusions concerning a general grounding problem from actual field data, scale model tests can be used to determine the touch and stop voltages and surface potential profiles around ground electrode. In this work, a hemispherical vessel with a diameter of 1,100[mm] was employed to simulate uniform soil. As a result, the ground surface potential around the ground electrode was significantly raised In particular the ground surface potential at the just upper point of ground rod was higher than other points. When the buried depth of ground rod is increased, the ground surface potential and step voltage were lowered but the touch voltage was elevated.

Preparation of Al electrode with Ar-Kr gas mixture for OLED application (Ar-Kr 혼합가스를 이용한 OLED용 Al 전극 제작)

  • Kim, Sang-Mo;Jang, Kyung-Wook;Lee, Won-Jae;Kim, Kyung-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.11-15
    • /
    • 2007
  • As preparing electrode for the OLED with the sputtering process, in order to be lower damage of the bottom organic layer and increase the life-time of the OLED, we prepared Al electrode for that by using Facing Targets Sputtering (FTS) system. Al electrode directly deposited on the cell (LiF/EML/HTL/Bottom electrode). Deposition condition was the working gas (Ar, Kr and Ar+Kr) and working gas pressure (1 and 6 mTorr). The film thickness and I-V curve of Al/cell were evaluated by a $\acute{a}$-step profiler and a semiconductor parameter (HP4156A) measurement. The thin film surface image was observed by a Atomic Force Microscope (AFM). In result, in comparison with about 11 [V] of the turn-on voltage of Al/cell with using the pure Ar gas, when Al thin film was deposited using the Ar-Kr mixture gas, the surface morphology was improved in some region and the turn-on voltage of Al/cell could be decreased to about 7 [V].

  • PDF

Detection of Protein Molecules by Electrical Current Response Using Two-Electrode Method

  • Lyu, Hong-Kun;Woo, Sung-Ho;Han, Yoon-Soo;Lee, Hee-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • In order to protect human lives from disease, various biosensors having the potential to analyze a variety of biomolecules have been utilized. Biosensors constitute one of the most promising ways to monitor and detect various biomolecules corresponding to diseases. In this study, we demonstrate that the reaction of streptavidin molecules with biotin on a gold electrode can be detected using the twoelectrode method with a gold electrode and a platinum reference electrode. We also show the characteristics of the electrical current response. While detecting 2-${\mu}M$ streptavidin molecules dissolved in phosphate buffered saline(PBS) solution, we found that an analytical biosensor can operate on the principle of detecting an antigen-antibody reaction event of protein molecules using the two-electrode method. We think that the "potential step" method might be useful to detect the occurrence of any antigen-antibody reactions and can be combined with other devices or ICs such as BJTs, MOSFETs, and OP-amps for the detection of biomolecules of diseases.

Design of Electrode Structure for Reducing Ag Paste for Shingled PV Module Application (Shingled PV 모듈 적용을 위한 Ag Paste 저감 전극 구조 설계)

  • Oh, Won Je;Park, Ji Su;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.267-271
    • /
    • 2019
  • A shingled PV module is manufactured by dividing and bonding. In this method, the solar cell is divided by lasers and bonded using electrically conductive adhesives (ECAs). Consequently, the manufacturing cost increases because a process step is added. Therefore, we aim to reduce the production cost by reducing the amount of Ag paste used in the solar cell front. Various electrode structures were designed and simulated. The number of fingers was optimized by designing thinner fingers, and the number of fingers with the maximum power conversion efficiency was confirmed. The simulation confirmed the maximum efficiency in the 4-divided electrode pattern. The amount of Ag paste used for each electrode pattern was calculated and analyzed. The number of fingers was optimized by decreasing the width of the finger; this will not only reduce the amount of Ag paste required but also the increase the efficiency.

Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode (금 입자 증착된 탄소나노튜브의 커패시턴스 증가 및 박막형 이온 선택성 전극으로서의 특성 평가)

  • Do Youn Kim;Hanbyeol Son;Hyo-Ryoung Lim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.310-317
    • /
    • 2023
  • Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP-CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP-CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.