• Title/Summary/Keyword: Steel-tube

Search Result 1,107, Processing Time 0.023 seconds

Effect on Boiling Bleat Transfer of Horizontal Micro-channel Diameters for R-22 and R-407C (수평미세관의 직경이 R-22 및 R-407C 비등열전달에 미치는 영향)

  • Yoon, Kuk-Young;Choi, Kwang-Il;Oh, Jong-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.163-172
    • /
    • 2003
  • Boiling heat transfer coefficients and pressure drops for R-22 and R-407C were measured in horizontal micro-channels. The test section is stainless steel tube, inner tube diameters are 1.8mm and 2.8mm, and the respective lengths are 1500mm and 3000mm. The range of mass flux is 300-600kg/$m^2$s and heat flux is 5-15kW/$m^2$. In this results, pressure drop increased linearly for both R-22 and R-407C with increased mass flux, but the increase of heat flux did not affect the pressure. In addition, the pressure drop was fairly increased in the high quality region rather than low quality region. In the range of low quality, the mass flux had a small affect on the heat transfer coefficients, however, in high quality region, the heat transfer coefficients increased even more with increasing mass flux. Under the low quality region and low mass flux, the heat transfer coefficients increased with increasing heat flux densities. The effects of inner tube diameter were clearly observed. Namely, the measured pressure drop inside inner tube diameter 1.8 mm is higher than 2.8 mm with increasing the mass flux and heat flux. Also, the measured local heat transfer coefficient inside inner tube diameter 1.8 mm is higher than 2.8 mm in the range of high qualities. The experimental data for R-407C compared with proposed correlation using pure refrigerant. The experimental data for R-407C was more decreased than the proposed correlation for pure refrigerant up to 50% or more.

An Experimental Study on Effect of Temperature and Oxygen fraction of Intake Air on Fuel Consumption in Radiant Tube Burner (Radiant Tube 버너에 있어서 흡기 온도 및 산소분물이 연료 소모에 미치는 영향)

  • Kim Hyun-woo;Lee Kyung-Hwan;Roh Dong-Soon
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.73-81
    • /
    • 2005
  • An Experimental study was conducted to investigate the effective way for fuel consumption improvement in radiant tube burner heating system used in steel manufacturing process. To find effectiveness of increase of temperature and oxygen fraction of intake air on fuel consumption, the model radiant tube burner heating system with recuperator was designed to be able to adjust temperature and oxygen fraction of intake air, and was operated under various conditions with oxygen concentration in exhaust gas changed. The results show that burner chamber temperature was increased about $10\%$ of intake air temperature increase. so it was difficult to expect fuel consumption improvement. But only 1 or $2\%$ increase of oxygen fraction in intake air made a significant improvement in fuel consumption even though it made much NOx emissions also. Therefore, if NOx emissions is controlled under regulation with burner modification, it is expected that increase of oxygen fraction in Intake air is effective way to improve fuel consumption.

Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion

  • Gao, Shan;Peng, Zhen;Wang, Xuanding;Liu, Jiepeng
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.615-627
    • /
    • 2019
  • This paper aims to study the compressive behavior of circular hollow and concrete-filled steel tubular stub columns under simulated marine atmospheric corrosion. The specimens after salt spray corrosion were tested under axial compressive load. Steel grade and corrosion level were mainly considered in the study. The mechanical behavior of circular CFST specimens is compared with that of the corresponding hollow ones. Design methods for circular hollow and concrete-filled steel tubular stub columns are modified to consider the effect of marine atmospheric corrosion. The results show that linear fitting curves could be used to present the relationship between corrosion rate and the mechanical properties of steel after simulated marine atmospheric corrosion. The ultimate strength of hollow steel tubular and CFST columns decrease with the increase of corrosion rate while the ultimate displacement of those are hardly affected by corrosion rate. Increasing corrosion rate would change the failure of CFST stub column from ductile failure to brittle failure. Corrosion rate would decrease the ductility indexes of CFST columns, rather than those of hollow steel tubular columns. The confinement factor ${\xi}$ of CFST columns decreases with the increase of corrosion rate while the ratio between test value and nominal value shows an opposite trend. With considering marine atmospheric corrosion, the predicted axial strength of hollow steel tubular and CFST columns by Chinese standard agree well with the tested values while the predictions by Japanese standard seem conservative.

An Experimental Study of Improving Fire Performance with Steel-fibers for Internally Anchored Square Composite Columns (내화성능 개선을 위한 강섬유 보강 내부 앵커형 각형강관 합성기둥의 실험연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.499-509
    • /
    • 2014
  • This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. The purpose of the study is to evaluate the load capacity and deformation capacity associated with the amount of steel fiber and loading condition and to analyze the interplay between the steel fiber reinforced concrete and the welding built-up square tube in terms of structure and fire resistance performance. Reinforcement of concrete with steel fiber(Vf=0.375%), when cross-section shape and boundary condition (load ratio) remained unchanged, improved fire resistance performance by 1.1~1.3 times. It is deemed that the area resisting thermal load increased and fire resistance performance was improved since the concrete reinforced with steel fiber restrained cracking. In addition, the fact that the cross-sections of the concrete were barely damaged indicates that load share capacity was greatly improved.

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.

Wave propagation simulation and its wavelet package analysis for debonding detection of circular CFST members

  • Xu, Bin;Chen, Hongbing;Xia, Song
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.181-194
    • /
    • 2017
  • In order to investigate the interface debonding defects detection mechanism between steel tube and concrete core of concrete-filled steel tubes (CFSTs), multi-physical fields coupling finite element models constituted of a surface mounted Piezoceramic Lead Zirconate Titanate (PZT) actuator, an embedded PZT sensor and a circular cross section of CFST column are established. The stress wave initiation and propagation induced by the PZT actuator under sinusoidal and sweep frequency excitations are simulated with a two dimensional (2D) plain strain analysis and the difference of stress wave fields close to the interface debonding defect and within the cross section of the CFST members without and with debonding defects are compared in time domain. The linearity and stability of the embedded PZT response under sinusoidal signals with different frequencies and amplitudes are validated. The relationship between the amplitudes of stress wave and the measurement distances in a healthy CFST cross section is also studied. Meanwhile, the responses of PZT sensor under both sinusoidal and sweep frequency excitations are compared and the influence of debonding defect depth and length on the output voltage is also illustrated. The results show the output voltage signal amplitude and head wave arriving time are affected significantly by debonding defects. Moreover, the measurement of PZT sensor is sensitive to the initiation of interface debonding defects. Furthermore, wavelet packet analysis on the voltage signal under sweep frequency excitations is carried out and a normalized wavelet packet energy index (NWPEI) is defined to identify the interfacial debonding. The value of NWPEI attenuates with the increase in the dimension of debonding defects. The results help understand the debonding defects detection mechanism for circular CFST members with PZT technique.

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.

A Study on the fire-resistance of concrete-filled steel square tube columns without fire protection under constant central axial loads

  • Park, Su-Hee;Choi, Sung-Mo;Chung, Kyung-Soo
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.491-510
    • /
    • 2008
  • This paper presents a plan and guidelines that were drawn for Korean based research carried out on the fire-resistance of CFT columns. This research was carried out by reviewing the Korean regulations related to the fire-resistance of CFT columns and examining studies which had been made in Korea as well as overseas. The first phase of the study plan was to compare the fire-resistance of square CFT columns without fire protection (obtained through fire-resistance tests and numerical analyses) with estimated values (obtained through fire-resistance design formulas proposed in Korea and overseas). This comparison provided conclusions as outlined below. Fire-resistance tests conducted in this study proved that, when the actual design load is taken into consideration, square CFT columns without fire protection are able to resist a fire for more than one hour. A comparison was made of test and analysis results with the fire-resistance time based on the AIJ code, the AISC design formula and the estimation formula suggested for Korea. The results of this comparison showed that the test and analysis results for specimens SAH1, SAH2-1, SAH2-2 and SAH3 were almost identical with the AIJ code, the AISC design formula and estimation formula. For specimens SAH4 and SAH5, the estimation formula was more conservative than the AIJ code and the AISC design formula. It was necessary to identify the factors that have an influence on the fire-resistance of CFT columns without fire protection and to draw fire-resistance design formulas for these columns. To achieve this, it is proposed that numerical analyses and tests be conducted in order to evaluate the fire-resistance of circular CFT columns, the influence of eccentricity existing as an additional factor and the influence of the slenderness ratio of the columns. It is also suggested that the overall behavior of CFT structures without fire protection within a fire be evaluated through analysis simulation.

Stress-transfer in concrete encased and filled tube square columns employed in top-down construction

  • Kim, Sun-Hee;Yom, Kyong-Soo;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.63-77
    • /
    • 2016
  • Top-down construction is a construction technique in which pit excavation and structure construction are conducted simultaneously. Reducing construction time and minimizing noise and vibration which affect neighboring structures, the technique is widely employed in constructing downtown structures. While H-steel columns have been commonly used as core columns, concrete filled steel tube (CFT) columns are at the center of attention because the latter have less axial directionality and greater cross-sectional efficiency than the former. When compared with circular CFT columns, square CFT columns are more easily connected to the floor structure and the area of percussion rotary drilling (PRD) is smaller. For this reason, square CFT columns are used as core columns of concrete encased and filled square (CET) columns in underground floors. However, studies on the structural behavior and concrete stress transfer of CET columns have not been conducted. Since concrete is cast according to construction sequence, checking the stress of concrete inside the core columns and the stress of covering concrete is essential. This paper presents the results of structural tests and analyses conducted to evaluate the usability and safety of CET columns in top-down construction where CFT columns are used as core columns. Parameters in the tests are loading condition, concrete strength and covering depth. The compressive load capacity and failure behavior of specimens are evaluated. In addition, 2 cases of field application of CET columns in underground floors are analyzed.

An Experimental Study on Flexural Behavior in Framed Structure of P.S.T Method (P.S.T 공법 라멘 구조물의 휨 거동 특성에 관한 실험적 연구)

  • Cui, Jie;Yoon, Jong Nam;Eum, Ki Young;Hong, Sung Nam;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.144-152
    • /
    • 2011
  • The existing underground trenchless methods use reinforcing rod in steel tube to obtain structural stiffness. However, there are some problems such as inconvenience of work and expensive material fee which are resulted from limited working space and reinforcing work. To resolve these problems, a new trenchless method, namely P.S.T method (Prestressed Segment Tunnel Method), is developed which uses joint to connect the steel segment and form erection structure in underground construction. Further, installing strands for prestressing. In order to evaluate the flexural capacity of the P.S.T method structure, experiment was conducted. The parameters considered in the experiment are the span-to-depth ratio, diameter of steel tube at corner, prestressing force and welding of joint. Altogether examining the flexural behavior, the effect of deflection in structure according to different parameters has also been analysised.