DOI QR코드

DOI QR Code

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu (Dept. of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Bo Xu (Dept. of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Chi Yao (Shanghai Baoye Group Co., Ltd.) ;
  • Alei Dong (Dept. of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Yuan Fang (Dept. of Civil Engineering and Architecture, Anhui University of Technology)
  • Received : 2022.09.23
  • Accepted : 2023.09.11
  • Published : 2023.12.25

Abstract

To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.

Keywords

Acknowledgement

This study was sponsored by the National Natural Science Foundation of China (No. 52078001), Outstanding Youth Fund of Anhui Province (No. 2008085J29), Major Science and Technology Project of Anhui Province (No. 202203a07020005), Key Research and Development Project of Anhui Province (No. 2022i01020005), and Postdoctoral Researchers Research Activities Foundation of Anhui Province (Nos. 2021B550 and 2021B551).

References

  1. Alatshan, F., Osman. S.A. and Hamid, R. (2020), "Stiffened concrete-filled steel tubes: A systematic review", Thin-Wall. Struct., 148, 1-18. https://doi.org/10.1016/j.tws.2019.106590.
  2. Beshr, H., Almusallam, A.A. and Maslehuddin. M. (2003), "Effect of coarse aggregate quality on the mechanical properties of high strength concrete", Construct. Build. Mater., 17(2), 97-103. https://doi.org/ 10.1016/S0950-0618(02)00097-1.
  3. Cardoso, C., Camoesa, A., Eiresa, R., Motab, A., Araujob, J., Castrob, F. and Carvalhob, J. (2018), "Using foundry slag of ferrous metals as fine aggregate for concrete", Resources Conserv. Recycling, 138(11), 130-141. https://doi.org/10.1016/j.resconrec.2018.05.020.
  4. Chang, X., Huang, C.K. and Chen, Y.J. (2009), "Mechanical performance of eccentrically loaded prestressing concrete filled circular steel tube columns by means of expansive cement", Eng. Struct., 31(11), 2588-2597. https://doi.org/10.1016/j.engstruct.2009.06.007.
  5. Devi, V.S. and Gnanavel, B.K. (2014), "Properties of concrete manufactured using steel slag", Procedia Eng., 97, 95-104. https://doi.org/10.1016/j.proeng.2014.12.229.
  6. Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Construct. Steel Res., 62(7), 706-715. https://doi.org/0143974X(2006)62:7<706:BONAHS>2.0.TX;2-L. https://doi.org/10.1016/j.jcsr.2005.11.002
  7. Fang, Y., Yu, F., Zhang, Y., Xu, L. and Wang, X.L. (2020), "Mechanical behavior and bearing capacity calculation of self-stressing steel slag aggregate reinforced concrete filled circular steel tube columns", Acta Materiae Compositae Sinica, 37(5), 1211-1220. https://doi.org/10.13801/j.cnki.fhclxb.20190916.001.
  8. Guochang, L., Zhijain, Y., Yan, L. and Chen, F. (2016), "Behavior of CFST columns with inner CFRP tube under biaxial eccentric loading", Steel Compos. Struct., 22(6), 1487-1505. https://doi.org/10.12989/scs.2016.22.6.1487.
  9. Han, F. and Zhang, Z. (2018), "Properties of 5-year-old concrete containing steel slag powder", Powder Technol., 334(7), 27-35. https://doi.org/ 10.1016/j.powtec.2018.04.054.
  10. Han, L.H. (2007), "Concrete filled steel tubular structures-theory and practice", Science Press, Beijing, China.
  11. Han, L.H., Tao, Z. and Yan, W.B. (2001), "Hysteresis behaviors of concrete filled steel tubular beam-columns with circular sections", Earthq. Eng. Eng. Vib., 21(1), 64-73. https://doi.org/10.13197/j.eeev.2001.01.013.
  12. Hao, S., Lihua, Z. and Yaohong, W. (2021), "Experimental study and finite-element analysis of shear wall with CFST, column-form reinforcement, and diagonal bars", Steel Compos. Struct., 41(4), 567-580. https://doi.org/10.12989/scs.2021.41.4.567.
  13. Hernandez, F., David Romero, M.L., Bonet, J.L. and Montalva, S.J.M. (2012), "Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities", J. Construct. Steel Res., 68(1), 107-117. https://doi.org/10.1016/j.jcsr.2011.07.014.
  14. Huang, Z., Jiang, L.Z., Zhou, W.B. and Chen, S. (2016), "Studies on restoring force model of concrete filled steel tubular laced column to composite box-beam connection", Steel Compos. Struct., 22(6), 1217-1238. https://doi.org/10.12989/scs.2016.22.6.1217.
  15. JGJ/T101-2015 (2015), "Specification for seismic test of buildings", China Construction Industry Press, Beijing, China.
  16. Kourounis, S., Tsivilis, S., Tsakiridis, P.E., Papadimitriou, G.D. and Tsibouki, Z. (2007), "Properties and hydration of blended cements with steelmaking slag", Cement Concrete Res., 37(6), 815-822. https://doi.org/ 10.1016/j.cemconres.2007.03.008.
  17. Li, N., Lu, Y.Y., Li, S. and Liang, H.J. (2019), "Experimental study on self-stressing and self-compacting concrete-filled circular steel tube short columns subjected to axial compression", J. Build. Struct., 40(11), 162-171. https://doi.org/10.14006/j.jzjgxb.2017.0807.
  18. Li, R.X. (2018), "A study on the technical and economic evaluation of the SSC development", Master Dissertation, Xihua University, Xihua. https://doi.org/CNKI:CDMD:2.1018.258530
  19. Liu, Z., Lu, Y., Li, S. and Yi, S. (2020), "Behavior of steel tube columns filled with steel-fiber-reinforced self-stressing recycled aggregate concrete under axial compression", Thin-Wall. Struct., 149, 106521. https://doi.org/10.1016/j.tws.2019.106521.
  20. Maslehuddin, M., Sharif, A.M., Shameem, M., Ibrahim, M. and Barry, M.S. (2003), "Comparison of properties of steel slag and crushed limestone aggregate concretes", Construct. Build. Mater., 17(2), 105-112. https://doi.org/10.1016/S0950-0618(02)00095-8.
  21. Santamaria, A., Orbe, A., San Jose, J.T., Gonzalez, J.J. (2018), "A study on the durability of structural concrete incorporating electric steelmaking slags", Construct. Build. Mater., 161(2), 94-111. https://doi.org/10.1016/j.conbuildmat.2017.11.121.
  22. Saxena, S. and Tembhurkar, A.R. (2018), "Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete", Construct. Build. Mater., 165(3), 126-137. https://doi.org/10.1016/j.conbuildmat.2018.01.030.
  23. Shang, Z.Q. and Huang, C.K. (2007), "Effects of confinement of the steel tube on expansion of self-stressing concrete", J. Build. Mater., 10(3), 307-312. https://doi.org/10.3969/j.issn.1007-9629.2007.03.010.
  24. Shi, C.J. (2002), "Characteristics and cementitious properties of ladle slag fines from steel production", Cement Concrete Res., 32(3), 459-462. https://doi.org/ 10.1016/S0008-8846(01)00707-4.
  25. Shi, L. (2011), "Study on the treatment and comprehensive utilization of steel slag", China Resources Comprehensive Utilization, 29(3), 29-32. https://doi.org/10.3969/j.issn.1008-9500.2011.03.005.
  26. Tao, Z., Song, T.Y., Uy, B. and Han, L.H. (2016), "Bond behavior in Concrete-filled Steel Tubes", J. Construct. Steel Res., 120(6), 81-93. https://doi.org/ 10.1016/j.jcsr.2015.12.030.
  27. Wang, G., Wang, Y. and Gao Z. (2010), "Use of steel slag as a granular material: Volume expansion prediction and usability criteria", J. Hazard. Mater., 184(1-3), 555-560. https://doi.org/10.1016/j.jhazmat.2010.08.071.
  28. Wang, Q., Yang, J.W. Yan, P.Y. (2012), "Influence of initial alkalinity on the hydration of steel slag", Sci. China Technol. Sci., 55(12), 3378-3387. https://doi.org/10.1007/s11431-012-4830-9.
  29. Wang, X.G., Su, Y.P., Ge, N. and Wang, C.M. (2011), "Research on a simplified rein forced concrete frame column model subjected to lateral impact load", J. Guangxi Univ. Nat. Sci., 36(1), 15-20. https://doi.org/10.3969/j.issn.1001-7445.2011.01.003.
  30. Wang, J.T., Wang, F.C. (2021), "Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression", Steel Compos. Struct., 38(6), 617-635. https://doi.org/10.12989/scs.2021.38.6.617.
  31. Wu, Y.D., Peng, B., Wu, L., Lu, W. and Zhang, G.H. (2021), "A development on the treatment and utilization of steel slag at home and abroad", Environ. Eng., 39(1), 161-165. https://doi.org/10.13205/j.hjgc.202101025.
  32. Xu, L. (2015), "Experimental study and theoretical analysis on static performance of the SSC-filled circular steel tube", Master Dissertation, Anhui University of Technology, Anhui.
  33. Yang, S.C., Wang, F.M. and Qu, P. (2008), "Brief introduction to the core concretes empty influence on the mechanical performance of concrete filled stee1tube components", J. Chongqing Jiaotong Univ. Nat. Sci., 27(3), 360-365. https://doi.org/ CNKI:SUN:CQJT.0.2008-03-008.
  34. Yao, W., Zhong, W.H. (2003), "Analytical study of self-compact and self-stressing concrete filled in steel tube", J. Build. Mater., 6(4), 369-373. https://doi.org/10.3969/j.issn.1007-9629.2003.04.006.
  35. Yu, F., Cao, Y. and Fang, Y. (2020), "Mechanical behavior of self-stressing steel slag aggregate concrete filled steel tubular short columns with different loading modes", Structures, 26, 947-957. https://doi.org/ 10.1016/j.istruc.2020.05.015.
  36. Yu, F., Qin, Y., Yao, C., Bu, S. and Fang, Y. (2022), "Experimental investigation on the seismic behavior of self-stressing steel slag CFST column", Struct. Concrete, 23(4), 1492-1507. https://doi.org/ 10.1002/suco.202100523.
  37. Zhang, W.F. (2003), "Ductility coefficients of concrete-filled steel tubular sections", World Earthq. Eng., 19(3), 84-90. https://doi.org/ 10.3969/j.issn.1007-6069.2003.03.016.
  38. Zhang, X.G, Chen, Z.P, Xue, J.Y. (2017), "Analysis of seismic failure mechanism and damage for recycled aggregate concrete filled steel tube column", World Earthq. Eng., 33(3), 176-184. https://doi.org/ CNKI:SUN:SJDC.0.2017-03-022.