• Title/Summary/Keyword: Steel-tube

Search Result 1,107, Processing Time 0.024 seconds

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

In-Plane Stability of Concrete-Filled Steel Tubular Parabolic Truss Arches

  • Liu, Changyong;Hu, Qing;Wang, Yuyin;Zhang, Sumei
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1306-1317
    • /
    • 2018
  • For determining the in-plane buckling resistance of a concrete-filled steel tubular (CFST) arch, the current technical code GB50923-2013 specifies the use of an equivalent beam-column method which ignores the effect of rise-to-span ratio. This may induce a gap between the calculated result and actual stability capacity. In this study, a FE model is used to predict the buckling behavior of CFST truss arches subjected to uniformly distributed loads. The influence of rise-to-span ratio on the capacity of truss arches is investigated, and it is found that the stability capacity reduces as rise-to-span ratio declines. Besides, the calculations of equivalent slenderness ratio for different truss sections are made to consider the effect of shear deformation. Moreover, based on FE results, a new design equation is proposed to predict the in-plane strength of CFST parabolic truss arches under uniformly distributed loads.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

A robust approach in prediction of RCFST columns using machine learning algorithm

  • Van-Thanh Pham;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.153-173
    • /
    • 2023
  • Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.

Strengthened and flexible pile-to-pilecap connections for integral abutment bridges

  • Lee, Jaeha;Kim, WooSeok;Kim, Kyeongjin;Park, Soobong;Jeong, Yoseok
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.731-748
    • /
    • 2016
  • Pile-to-pilecap connection performance is important as Integral abutment bridges (IABs) have no expansion joints and their flexible weak-axis oriented supporting piles take the role of the expansion joint. This connection may govern the bridge strength and the performance against various lateral loads. The intention of this study is to identify crack propagation patterns when the pile-to-pilecap connection is subjected to lateral loadings and to propose novel connections for improved performance under lateral loadings. In this study, eight different types of connections were developed and modeled, using Abaqus 6.12 to evaluate performances. Three types were developed by strengthening the connections using rebar or steel tube: (i) PennDOT specification; (ii) Spiral rebar; and (iii) HSS tube. Other types were developed by softening the connections using shape modifications: (i) cylindrical hole; (ii) reduced flange; (iii) removed flange; (iv) extended hole; and (v) slot hole connection types. The connections using the PennDOT specification, HSS tube, and cylindrical hole were shown to be ineffective in the prevention of cracks, resulting in lower structural capacities under the lateral load compared to other types. The other developed connections successfully delayed or arrested the concrete crack initiations and propagations. Among the successful connection types, the spiral rebar connection allowed a relatively larger reaction force, which can damage the superstructure of the IABs. Other softened connections performed better in terms of minimized reaction forces and crack prevention.

Structural Behavior of Circular Tube Column Bases under the Axial Load (축압축력을 받는 노출형 원형강관 주각의 거동)

  • Lee, Tae Kyu;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.471-478
    • /
    • 2004
  • The object of this study is to experimentally investigate the structural behavior of circular tube column bases under axial loads and to ascertain the test results using elastic numerical analysis. A literature survey was conducted on the AISC design code and a few design formulae. Tests were axially conducted under compressive loads. The thickness of the base plate was the main parameter of the specimens. Nine base plate specimens were used, with thicknesses ranging from 9 millimeters to 35 millimeters. The relationship of the load and the vertical displacement of base plates and the relationship of the load and the strain of the base plates were tested. Ansys version 6.1 was used for the elastic numerical analysis, to ascertain the test results. he test results and the elastic numerical analysis results will be used to suggest design formulae for inelastic numerical analyses that will be conducted later on.

Behavior of Concrete-Filled Tube Column to H-Beam Connections with External Stiffeners and Reinforcing Bar (외부스티프너와 철근으로 보강한 CFT 기둥-H형강 보 접합부의 거동)

  • Kang, Chang-Hoon;Shin, Kyung-Jae;Oh, Young-Suk;Moon, Tae-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.55-63
    • /
    • 2000
  • This paper is a study on the behavior of Concrete-Filled Square Tubular(CFST) column to H-beam connections reinforced with external stiffeners and reinforcing bar. The cyclic loading tests of 5 test specimens were carried out. The main Parameters are as follows; 1)the length of the stiffener: 200mm, 250mm, 2)the diameter of reinforcing bar: HD16, 19. The results of the researches demonstrate that the increase of the stiffener length was more effective than the increase of the area of reinforcing bar in the point of both strength and stiffness. By reinforcing external stiffeners, stable hysteretic behavior was shown and plastic hinge was formed on the beam flange. Cold-formed tube sections should be used carefully to avoid the welding fracture at the round corners of section, and the proposed welding methods are suitable for this connections.

  • PDF

Strength and Moment-Curvature Relationship of HCFT Columns under Eccentric Load (편심압축이 작용하는 HCFT기둥에 대한 내력특성과 모멘트-곡률의 곤계)

  • 이승조;박정민;김화중
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.864-873
    • /
    • 2002
  • Recently, CFT Column has reported a lot of study result, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing column. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, high-strength concrete filled steel square tube column(HCFT) examined numerical value explanatorily about transformation performance(M-ø) of when short-column receives equal flexure-moment from axial stress on research for concrete. hnd, with basis assumption, executed development of analysis program of moment-curvature relation for analytic analysis of transformation performance of HCFT section that get by an experiment. This study investigated to properties of structural(capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete(600kgf/$\textrm{cm}^2$), D/t ratio, slenderness ratio(λ) and concrete kinds under eccentric load. And, I executed comparative analysis with AISC-LRFD, AIJ and Takanori Sato etc. and experiment result that is capacity design formula.

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties (전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

Semiquantitative Dynamic Headspace GC-MS Analysis for Organic Compounds Outgassed from FAB Materials of Air Shower (에어샤워부품의 용출 가스 중 유기화합물의 반 정량적 Headspace GC-MS 분석)

  • Park, Hyun-Mee;Baig, Soung-Woo;Kim, Young-Man;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.412-422
    • /
    • 2000
  • The polymeric FAB materials of air shower used in clean room of wafer industry have been outgassed with the dynamic headspace (ca.$100^{\circ}C$) for half an hour, and analyzed using GC-MS. The air in the clean room running air shower was sampled using sorbent tube method, and the organic compounds adsorbed in the sorbent tube were extracted using Soxhlet extraction method, and analyzed using GC-MS. The analytical results from FAB materials of air shower (electric over current relay, acryl plate. polycarbonate window, filter, fan housing, steel galvanized cold plate and canvas buffer) indicated that most of chemicals were originated from polymer fragments of FAB materials. Their analytical results have been compared with those from the air of clean room running air shower. These comparative results could lead to identify whether the sources of trace organic contaminants in clean room air are originated from the polymeric FAB material of air shower.

  • PDF