• 제목/요약/키워드: Steel-tube

검색결과 1,107건 처리시간 0.023초

Optimal Design of Deep-water 30kHz Omnidirectional Sonar Transducer Using a Coupled FE-BEM

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권4E호
    • /
    • pp.3-9
    • /
    • 1999
  • Deep-water sonar transducers of FFR (Free Flooded Ring) type have been designed using a coupled FE-BEM. The proposed sonar transducers are composed of piezoelectric ceramic tubes and structural steel materials for simple fabrication. In order to have an omnidirectional beam pattern around 30kHz, a conic steel is placed below a piezoelectric tube or a steel disc is placed between two piezoelectric tubes. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Various results are available such as directivity patterns and transmitting voltage responses. The most optimal structure and dimensions of the steel material were calculated, so that the beam patterns of the sonar transducers had +/- 3dB omnidirectivity at 30kHz.

  • PDF

USC 발전설비 용접부 HAZ 조직의 내 크리프 특성 (Characterization of Creep Resistance for HAZ Structures in Weldment of USC Power Plant)

  • 백승세;박정훈;이송인;권일현;이동환;양성모;유효선
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.250-252
    • /
    • 2005
  • T/P92 steels are created for using USC boiler tube and header in next generation power plant. SP-Creep test and tensile creep test are performed to characterize creep for local structures of T/P92 steel weldment. The results are shown that P92 steel weldment is clearly superior than that of X20CrMoV121 steel weldment, which is widely used in supercritical power Plant. while fine gram HAZ is most weakest in X20 steel weldment, coarse grain HAZ is most weakest in P92.

  • PDF

A study on nonlinear analysis and confinement effect of reinforced concrete filled steel tubular column

  • Xiamuxi, Alifujiang;Hasegawa, Akira;Yu, Jiang
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.727-743
    • /
    • 2015
  • According to former studies, the mechanical properties of reinforced concrete filled tubular steel (RCFT) columns differed greatly from that of concrete filled steel tubular (CFT) columns because of interaction of inserted reinforcement in RCFT. Employing an experiment-based verification policy, a general FE nonlinear analysis model was developed to analyze the mechanical behavior and failure mechanism of RCFT columns under uniaxial compression. The reasonable stress-strain relationships were suggested for confined concrete, reinforcements and steel tube in the model. The mechanism for shear failure of concrete core was found out in the numerical simulation, and a none-conventional method and equation for evaluating the confinement effect of RCFT were proposed.

Development of Porous Metal Materials and Applications

  • Fang, Y.;Wang, H.;Zhou, Y.;Kuang, C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.599-600
    • /
    • 2006
  • This paper described the state of art of porous metal materials, the typical manufacturing technologies and performances of sintered metal porous materials, with emphasis on the recent research achievements of CISRI in development of porous metal materials. High performance porous metal materials, such as metallic membrane, sub-micron asymmetric composite porous metal, large dimensional and structure complicated porous metal aeration cones and tube, metallic catalytic filter elements, lotus-type porous materials, etc, have been developed. Their applications in energy industry, petrochemical industry, clean coal process and other industrial fields were introduced and discussed.

  • PDF

Tubular composite beam-columns of annular cross-sections and their design practice

  • Kvedaras, A.K.;Kudzys, A.
    • Steel and Composite Structures
    • /
    • 제10권2호
    • /
    • pp.109-128
    • /
    • 2010
  • The expediency of using tubular composite steel and concrete columns of annular cross-sections in construction is discussed. The new type space framework with tubular composite columns of multi-storey buildings and its rigid beam-column joints are demonstrated. The features of interaction between the circular steel tube and spun concrete stress-strain states during the concentrical and eccentrical loading of tubular composite members are considered. The modeling of the bearing capacity of beam-columns of composite annular cross-sections is based on the concepts of bending with a concentrical force and compression with a bending moment. The comparison of modeling results for the composite cross-sections of beam-columns is analysed. The expediency of using these concepts for the limit state verification of beam-columns in the methods of the partial safety factors design (PSFD) legitimated in Europe and the load and resistance factors design (LRFD) used in other countries is presented and illustrated by a numerical example.

Buckling behavior of bundled inclined columns: Experimental study and design code verification

  • Moussa Leblouba;Samer Barakat;Raghad Awad;Saif Uddin Al-Khaled;Abdulrahman Metawa;Abdul Saboor Karzad
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.183-197
    • /
    • 2024
  • Not all structural columns maintain a vertical orientation. Several contemporary building structures have inclined columns, introducing distinct challenges, particularly in buckling behavior. This study examines the buckling behavior of inclined, thin-walled steel bundled columns, differing from typical vertical columns. Using specimens with three tubes welded to plates linearly aligned at the top and triangularly at the bottom, tests indicated that buckling capacity increases with tube wall thickness and diameter but decreases with column height. Inclined tubes in bundled columns showed improved buckling resistance over vertical ones. Results were verified against standard steel design guidelines to assess their predictive accuracy.

압축을 받는 내부 구속 중공 RC 기둥의 내부 구속력 (Internal Confining Stress of Internally Confined Hollow Columns under Compressive Load)

  • 원덕희;한택희;김승준;강영종
    • 한국강구조학회 논문집
    • /
    • 제25권3호
    • /
    • pp.243-254
    • /
    • 2013
  • 내부구속중공 RC(Internally Confined Hollow RC, ICH RC) 기둥이란 중공 RC 기둥의 중공부에 내부튜브를 삽입하여 코어 콘크리트를 3축 구속 상태에 놓이게 하여 기둥의 강도와 연성도를 증가시킨 기둥이다. ICH RC 기둥의 구속응력에 대한 연구는 선행 연구자에 의하여 이루어 졌으나 외부 구속응력에 대한 연구만 진행된 상태이다. 본 연구에서는 중공 RC 기둥과 ICH RC 기둥의 구속응력을 유한요소 해석프로그램을 이용하여 분석하였다. 이론 구속응력과 외부 구속응력 그리고 내부 구속응력과의 관계를 도출하였으며, 이를 이용하여 기존의 내부 튜브 파괴조건식을 기반으로 수정 내부튜브 파괴 조건식을 제안하였다. 이론 구속응력과 내부 구속응력과의 관계를 회귀 분석식을 이용하여 나타내어 내부 구속응력을 쉽게 산정할 수 있다. 또한 수정 내부 튜브 파괴 조건식을 이용하여 ICH RC 기둥을 설계할 경우 동일 구속응력대비 기존의 파괴조건식보다 약 50%의 내부 튜브 두께를 감소할 수 있어 경제성을 확보하였다.

CFT 기둥의 비선형 유한요소해석을 위한 개선된 강관-콘크리트 간 부착 모델 개발 (An Improved Bond Slip Model of CFT Columns for Nonlinear Finite Element Analysis)

  • 권양수;곽효경;황주영;김진국;김종민
    • 한국전산구조공학회논문집
    • /
    • 제28권2호
    • /
    • pp.213-220
    • /
    • 2015
  • 본 논문에서는 CFT 구조의 강관과 내부 충전 콘크리트 간 복합거동을 유한요소해석 시 적절하게 반영하기 위해 강관과 콘크리트 간 부착 슬립관계 묘사를 위한 알고리즘을 제시하였다. 내부 충전 콘크리트에 축방향 하중 발생 시, 강관과 콘크리트 간 마찰로 인해 강관으로 하중이 전달되며, 이에 따른 강관 슬립량과 힘의 평형관계를 통해 등가강성을 통해 부착관계를 파악할 수 있다. 실제 원형 CFT 부재의 부착응력 실험을 통해 측정된 수직 및 수평 방향 응력 분포 결과와 제안된 해석 기법을 통해 산정된 응력 분포의 비교를 통해 제안된 해석 기법의 타당성을 검증하였다. 또한 비선형 유한요소해석 시 강관과 콘크리트의 부착 거동 묘사에 따라 CFT 기둥의 거동 특성에 영향을 미치게 되므로 축방향 하중이 작용하는 CFT 부재 실험 결과와 제안된 부착-슬립 모델을 반영한 유한요소해석 결과의 하중-변위 곡선 관계 비교를 통해 제안된 기법의 적합성을 검증하였다.

Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines

  • Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.347-359
    • /
    • 2020
  • The objective of this study is to experimentally scrutinize the axial performance of built-up concrete filled steel tube (CFT) columns composed of steel plates. In this case, the main parameters cross section types, compressive strength of filled concrete, and the effect of welding lines. Welded built-up steel box columns are fabricated by connecting two pieces of cold-formed U-shaped or four pieces of L-shaped thin steel plates with continuous penetration groove welding line located at mid-depth of stub column section. Furthermore, traditional square steel box sections with no welding lines are investigated for the comparison of axial behavior between the generic and build-up cross sections. Accordingly, 20 stub columns with thickness and height of 2 and 300 mm have been manufactured. As a result, welding lines in built-up specimens act as stiffeners because have higher strength and thickness in comparison to the plates. Subsequently, by increasing the welding lines, the load bearing capacity of stub columns has been increased in comparison to the traditional series. Furthermore, for specimens with the same confinement steel tubes and concrete core, increment of B/t ratio has reduced the ductility and axial strength.

Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete

  • Li, Xiang;Zhou, Xuhong;Liu, Jiepeng;Wang, Xuanding
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.411-422
    • /
    • 2019
  • Six shear-critical square tubed steel reinforced concrete (TSRC) columns using the high-strength concrete ($f_{cu,150}=86.6MPa$) were tested under constant axial and lateral cyclic loads. The height-to-depth ratio of the short column specimens was specified as 2.6, and the axial load ratio and the number of shear studs on the steel shape were considered as two main parameters. The shear failure mode of short square TSRC columns was observed from the test. The steel tube with diagonal stiffener plates provided effective confinement to the concrete core, while welding shear studs on the steel section appeared not significantly enhancing the seismic behavior of short square TRSC columns. Specimens with higher axial load ratio showed higher lateral stiffness and shear strength but worse ductility. A modified ACI design method is proposed to calculate the nominal shear strength, which agrees well with the test database containing ten short square TSRC columns with shear failure mode from this study and other related literature.