• Title/Summary/Keyword: Steel-tube

검색결과 1,099건 처리시간 0.022초

Influence of creep on dynamic behavior of concrete filled steel tube arch bridges

  • Ma, Yishuo;Wang, Yuanfeng;Su, Li;Mei, Shengqi
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.109-122
    • /
    • 2016
  • Concrete creep, while significantly changing the static behaviors of concrete filled steel tube (CFST) structures, do alter the structures' dynamic behaviors as well, which is studied quite limitedly. The attempt to investigate the influence of concrete creep on the dynamic property and response of CFST arch bridges was made in this paper. The mechanism through which creep exerts its influence was analyzed first; then a predicative formula was proposed for the concrete elastic modulus after creep based on available test data; finally a numerical analysis for the effect of creep on the dynamic behaviors of a long-span half-through CFST arch bridge was conducted. It is demonstrated that the presence of concrete creep increases the elastic modulus of concrete, and further magnifies the seismic responses of the displacement and internal force in some sections of the bridge. This influence is related closely to the excitation and the structure, and should be analyzed case-by-case.

복합소재를 이용한 자동차 클러치 커넥터 안정성에 관한 연구 (A study on using composite materials for automotive clutch connector reliability)

  • 이창헌;이종형;변재혁
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.81-88
    • /
    • 2013
  • Recently, energy-saving technology is rapidly becoming a crucial issue for mankind due to the depletion of natural resources. From this perspective, every automobile manufactures are trying to develop light materials and to validate safety with environmental consideration. In this study, we developed clutch connector tube which is the parts of power transferring clutch with light materials to substitude for existing general steel materials. We also verified that the general steel materials can be replaced with nylon, fiberglass, stainless and plastic materials or not. As a result, we verified that the mixture of glass and nylon composite material can substitude the general steel.

Experimental study on shear capacity of circular concrete filled steel tubes

  • Xiao, Congzhen;Cai, Shaohuai;Chen, Tao;Xu, Chunli
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.437-449
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have recently seen wide use in China, but studies of the shear problem of CFST are inadequate. This paper presents an experimental study on the shear capacity of circular concrete filled steel tube (CCFT) specimens with and without axial compression force. Shear capacity, ductility, and damage modes of CCFTs were investigated and compared. Test results revealed the following: 1) CCFTs with a small shear span ratio may fail in shear in a ductile manner; 2) Several factors including section size, material properties, shear span ratio, axial compression ratio, and confinement index affect the shear capacity of CCFTs. Based on test results and analysis, this paper proposes a design formula for the shear capacity of CCFTs.

석유화확 Plant에서 장시간 사용된 튜브형태 탄소강의 열화현상 (Degradation of Carbon Steel Tube after Long Time Exposure at Petrochemical Plant)

  • 백남익
    • 열처리공학회지
    • /
    • 제13권1호
    • /
    • pp.16-20
    • /
    • 2000
  • There have been little reports on the degradation of medium-carbon steel tubes served at high temperature for a long period. The purpose of this research was to provide the information of the proper replacement span of the tubes with the new ones. We investigated the medium-carbon steel tubes which were used at petrochemical plant for about 50,000 hrs to examine their mechanical properties and microstructures. Experimental results showed that the tubes satisfied the specification of ASTM despite such a long period of service, but mechanical properties, especially charpy impact values, were reduced. It concludes that the tubes on service at the plants needs a periodical inspection.

  • PDF

The Investigation of the Plasma Sprayed Coatings for the Application of OG Cooling Tube in Steel Making Plant

  • Kim, HyungJun;Kwon, YoungGak
    • Corrosion Science and Technology
    • /
    • 제4권1호
    • /
    • pp.23-28
    • /
    • 2005
  • Several plasma-sprayed ceramic coatings with two- and three-layers were characterized and tested for the application of cooling tube coatings of oxygen convert gas recovery system (OG cooling system) in the steel making plant. Thermal cycling tests using a torch heating with compressed air cooling were carried out and characterized before and after the tests. The effects of metallic bond coat as well as ceramic top coat were also studied. Possible failure mechanisms with low carbon steel substrate were assessed in term of microstructure, porosity, bond strength, thermal expansion coefficient, and the phase transformation. Finally, the results of field tests at the OG cooling system are presented and discussed their microstructural degradation. Test results have shown that three-layered coatings perform better than two-layered coatings.

금속와이어 흡음재의 흡음성능에 관한 실험적 연구 (An Experimental Study on the Absorption Performance of Steel-Wire Sound Absorbing Materials)

  • 서성원;용호택;이동훈
    • 설비공학논문집
    • /
    • 제15권5호
    • /
    • pp.413-421
    • /
    • 2003
  • The acoustic performances of steel-wire sound absorbing materials with different thicknesses and bulk densities were investigated experimentally. The well-known two-cavity method was used to measure the characteristic impedance, propagation constant and absorption coefficient. The normal absorption coefficients measured by two-cavity method agreed well with those by the two-microphone impedance tube method. The experimental results showed that the magnitude of the absorption coefficient and the frequency range of the maximum absorption coefficient were controllable by changing the thickness and bulk density of the steel-wire. Therefore, the steel-wires obtained from the crushed tire chips could be used as a good absorbing material.

Acoustical Properties and Absorption Performance of Steel-Wire Fabrics

  • Seo, Seong-Won;Kim, Dong-Woo;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권2호
    • /
    • pp.87-96
    • /
    • 2004
  • Acoustic performances of the steel-wire fabrics manufactured from the crushed tires were experimentally investigated for various thicknesses and bulk densities. The well- known two-cavity method was used to measure the characteristic impedances, the propagation constants, and the absorption coefficients. The normal absorption coefficients measured by the two-cavity method agreed well with those measured by the two-microphone impedance tube method. The experimental results showed that the magnitude and frequency range of the absorption coefficient were controllable by changing the thickness and the bulk density of the steel-wire fabrics. Therefore, the steel-wire fabrics from the crushed tires can be successfully used as a good sound absorbing material.

Axial load behavior and stability strength of circular tubed steel reinforced concrete (SRC) columns

  • Yan, Biao;Liu, Jiepeng;Zhou, Xuhong
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.545-556
    • /
    • 2017
  • The tubed steel reinforced concrete (SRC) column is a composite column in which the outer steel tube is mainly used to provide confinement on the core concrete. This paper presents experimental and analytical studies on the behavior of circular tubed SRC (TSRC) columns subjected to axial compression. Eight circular TSRC columns were tested to investigate the effects of length-to-diameter ratio (L/D) of the specimens, diameter-to-thickness ratio (D/t) of the steel tubes, and use of stud shear connectors on the steel sections. Elastic-plastic analysis on the steel tubes was used to investigate the mechanism of confinement on the core concrete. The test results indicated that the tube confinement increased the strength and deformation capacity for both short and slender columns, and the effects on strength were more pronounced for short columns. A nonlinear finite element (FE) model was developed using ABAQUS, in which the nonlinear material behavior and initial geometric imperfection were included. Good agreement was achieved between the predicted results using the FE model and the test results. The test and FE results were compared with the predicted strengths calculated by Eurocode 4 and the AISC Standard. Based on the analytical results, a new design method for this composite column was proposed.

Structural behavior of slender circular steel-concrete composite columns under various means of load application

  • Johansson, Mathias;Gylltoft, Kent
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.393-410
    • /
    • 2001
  • In an experimental and analytical study on the structural behavior of slender circular steel-concrete composite columns, eleven specimens were tested to investigate the effects of three ways to apply a load to a column. The load was applied eccentrically to the concrete section, to the steel section or to the entire section. Three-dimensional nonlinear finite element models were established and verified with the experimental results. The analytical models were also used to study how the behavior of the column was influenced by the bond strength between the steel tube and the concrete core and the by confinement of the concrete core offered by the steel tube. The results obtained from the tests and the finite element analyses showed that the behavior of the column was greatly influenced by the method used to apply a load to the column section. When relying on just the natural bond, full composite action was achieved only when the load was applied to the entire section of the column. Furthermore, because of the slenderness effects the columns did not exhibit the beneficial effects of composite behavior in terms of increased concrete strength due to the confinement.

Behaviour of high strength concrete-filled short steel tubes under sustained loading

  • Younas, Saad;Li, Dongxu;Hamed, Ehab;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.159-170
    • /
    • 2021
  • Concrete filled steel tubes (CFSTs) are extensively used in a variety of structures due to their structural and economic advantages over other types of structures. Considerable research has been conducted with regards to their short-term behaviour, and very limited studies have focused on their long-term behaviour. In this study, a series of tests were carried out on high strength squat (short) CFSTs and concrete cylinders under controlled conditions of temperature and humidity to better understand their time dependent behaviour. A number of parameters were investigated including the influence of steel and concrete bond, confinement, level of sustained load and sizes of specimens. The results revealed that creep strains increased by more than 40% if there was no bonding between steel tube and concrete core. As expected, creep and shrinkage of concrete inside a steel tube were significantly less than those developed in exposed concrete. At the end of a creep period of six months, all the specimens were tested to failure to observe the influence of sustained loads on the ultimate strength. It was found that creep does not have a major effect on the strength of short CFSTs in the specific experimental study conducted here, which was less than 2.5%.