• Title/Summary/Keyword: Steel-Fiber reinforcement

Search Result 476, Processing Time 0.035 seconds

Shear Behavior of High-Strength Concrete Beams with Steel Fiber (고강도 강섬유보강콘크리트 보의 전단거동)

  • Karl, Kyoung-Wan;Hwang, Jin-Ha;Lee, Deuck-Hang;Ju, Hyun-Jin;Kim, Kang-Su;Cho, Hae-Chang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.65-66
    • /
    • 2010
  • In this paper, an experimental investigation on three high-strength steel fiber reinforced concrete beams with 0.5%-1.0% steel fiber and the one without steel fiber, which led to shear failure, is reported to investigate the effectiveness of steel fibers as shear reinforcement. The test results showed that the shear strengths of high-strength concrete beams increased and had more ductile behavior as larger amount of steel fiber were included.

  • PDF

Study on the Strength Characteristics and Flexural Toughness of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 강도특성 및 휨인성에 관한 연구)

  • 김기락;연규석;이윤수
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.137-145
    • /
    • 1999
  • The use of steel fiber reinforced to improve the strength and flexural toughness of concrete is well known, but reinforcement of polymer concrete with steel fibers has been hardly reported till now. Polymer concrete has high strength, durability and freeze-thaw resistance than that of cement concrete, but it has disadvantage such as low flexural toughness. In this paper, the strength characteristics and flexural toughness of steel fiber reinforced polymer concrete are investigated experimentally with various steel fiber aspect ratios($\ell$/d), and contents(vol.%). As the result, the flexural and splitting tensile strengths and flexural toughness were increased aspect ratio, and reach the maximums at a aspect ratio of 50. The relationship between the compressive, flexural and splitting tensile strength were high. And the relationship between flexural strength and strain energy was approximately linear.

Physical Properties of Organic- and Inorganic-Fiber Reinforced Portlandcement (유기 및 무기 섬유로 보강한 포트랜드 시멘트의 물성 연구)

  • Chang Pok-Kie;Kim Yun Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.690-695
    • /
    • 2004
  • In this study, inorganic (steel, asbestos and carbon) and organic (polyacryl and polyamide) fibers were used to investigate their reinforcing effects of the physical properties of Portland cement. From the load-displacement curve of each reinforced specimen, fracture strength, Young's module, fracture energy and fracture toughness were computed and compared with each other. In addition, the experiment of their impact toughness was carried out and compared with the fracture energy. For the improvement of fracture strength the inorganic (asbestos) fiber reinforcement was most effective, while the best reinforcing effect of impact toughness was achieved by organic (polyacryl) fiber. And steel fiber proved to be most adequate for improvement of both fracture strength and impact toughness. Steel fiber also showed the highest fracture energy and fracture toughness among all of the fibers.

Shear Performance on SFRC Beam Using Recycled Coarse Aggregate (순환골재를 사용한 SFRC 보의 전단성능)

  • Kim, Seongeun;Jeong, Jaewon;Kim, Seunghun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.189-196
    • /
    • 2018
  • Degraded shear performance of reinforced concrete members with recycled coarse aggregate (RCA) compared to flexural strength is a problem. To address this, steel fibers can be used as concrete reinforcement material. In this study, the strength and deformation characteristics of SFRC beams using RCA were to be determined by shear tests. Major experimental variables include the volume fraction of steel fiber (0, 0.5%, 1%), the replacement rate of RCA (0%, 100%), and the shear span ratio (a/d = 1, 2). As a result of the experiment, the shear strength of the specimen increased as the rate of mixing steel fiber increased. For specimens with RCA and 1% steel fiber, the maximum shear strengths increased by 1.77 - 6.25% compared to specimens with normal coarse aggregate (NCA). On the other hand, at 0-0.5% steel fiber, the shear strengths of RCA specimens were reduced by 24.2% to 49.2% compared to NCA specimens. This indicates that reinforcement with 1% volume fraction of steel fiber greatly contributes to preventing shear strength reduction due to the use of RCA.

Application of SFRC as a lining material in tunnels (터널라이닝 구조재로서 SFRC 적용에 관한 연구)

  • Yi, Sang-Keun;Kim, Dong-In;Jo, Gyu-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.25-34
    • /
    • 2001
  • As the topography of Korea consists of mountains at about seventy percent, there is necessarily an increasing demand for tunnel construction according to the expansion of the existing highway and construction of new highway. The concrete lining of tunnel portals has been designed with reinforced concrete to resist the cracking due to the difference in temperature in the inside and outside of tunnel. In the paper, the application of steel fiber reinforcement concrete was analyzed as the lining concrete at tunnel portals and through structure analysis and field model test the suitability of the steel fiber reinforcement concrete was assessed as the lining member of tunnel portal.

  • PDF

A Study on the Shear Properties of Steel Fiber Reinforced Concrete Beams (강섬유(鋼纖維) 보강(補强)콘크리트보의 전단특성(剪斷特性)에 관한 연구(研究))

  • Moon, Je Kil;Hong, Ik Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.1-12
    • /
    • 1993
  • Four series of fiber reinforced concrete beams without shear reinforcement were tested to determine their cracking shear strengths and ultimate shear capacities. Results of tests on 36 reinforced concrete beams (including 21 containing steel fibers) are reported. Four parameters were varied in the study, namely, the concrete compressive strength, volume fraction of fibers, shear span-to-depth ratio, and the tensile steel reinforcement. The effects of fiber incorporation on failure modes, deflections, cracking shear strength, and ultimate shear strength have been examined. Resistance to shear stresses have been found to be improved by the inclusion of fibers. Based on these investigations, a method of computing the shear strength of steel fiber reinforced concrete beam is suggested. The comparisons between computed values and experimentally observed values are shown to verify the proposed theoretical treatment.

  • PDF

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

An Experimental Study on Improved Bearing-Capacity of Reinforced Concrete Beam Using Reinforcement Materials (보강재를 사용한 철근 콘크리트 보의 내력보강에 관한 실험적 연구)

  • 홍상균;박기철;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.495-500
    • /
    • 1996
  • In this paper, it is the effect of using fiber sheet (Carbon Fiber Sheet & Aramid Fiber Sheet) and Steel Plate for reinforced concrete beam, 25 specimens are tested, 16 specimens for bending capacity and the other are for shear capacity. In the case of bending testing, the kind and quantity of the reinforcement materials, the bondage and the existence of crack were selected as experimental variables. And in the case of shear testing, it is testified the effect of reinforcement with the variables of the method of reinforcement (side type and U type). As a result, using the reinforcement meterials can increase the capacity of bending stress.

  • PDF

Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구)

  • Choi, Yun-Cheul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.573-581
    • /
    • 2013
  • In this paper, an experimental investigation of bond properties between steel fiber reinforced concrete and glass fiber reinforced polymer reinforcements was performed. The experimental variables were diameter of reinforcements, volume fraction of steel fiber, cover thickness and compressive strength of concrete. Bond failure mainly occurred with splitting of concrete cover. Main factor for splitting of concrete is tension force occurred by the displacement difference between reinforcements and concrete. Therefore, in order to prevent the bond failure between reinforcements and concrete, capacity of tensile strength of concrete cover should be upgraded. As a results of test, volume fraction of steel fiber significantly increases the bond strength. Cover thickness changes the failure mode. Diameter of reinforcements also changes the failure mode. Generally, diameter of reinforcement also affects the bond properties but this effect is not significant as volume fraction of fiber. Increase of compressive strength increases the bond strength between concrete and reinforcement because compressive strength of concrete directly affects the tensile strength of concrete.

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.