• Title/Summary/Keyword: Steel-Fiber reinforcement

Search Result 476, Processing Time 0.025 seconds

Numerical analysis for the punching shear resistance of SFRC flat slabs

  • Baraa J.M. AL-Eliwi;Mohammed S. Al Jawahery
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.425-438
    • /
    • 2023
  • In this article, the performance of steel fiber-reinforced concrete (SFRC) flat slabs was investigated numerically. The influence of flexural steel reinforcement, steel fiber content, concrete compressive strength, and slab thickness were discussed. The numerical model was developed using ATENA-Gid, user-friendly software for non-linear structural analysis for the evaluation and design of reinforced concrete elements. The numerical model was calibrated based on eight experimental tests selected from the literature to validate the actual behavior of steel fiber in the numerical analysis. Then, a parametric study of 144 specimens was generated and discussed the impact of various parameters on the punching shear strength, and statistical analysis was carried out. The results showed that slab thickness, steel fiber content, and concrete compressive strength positively affect the punching shear capacity. The fib Model Code 2010 for specimens without steel fibers and the model of Muttoni and Ruiz for SFRC specimens presented a good agreement with the results of this study.

Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review

  • Najigivi, Alireza;Nazerigivi, Amin;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2017
  • During the past decades, development of reinforcing materials caused a revolution in the structure of high strength and high performance cement-based concrete. Among the most important and exciting reinforcing materials, Steel Fiber (SF) becomes a widely used in the recent years. The main reason for addition of SF is to enhance the toughness and tensile strength and limit development and propagation of cracks and deformation characteristics of the SF blended concrete. Basically this technique of strengthening the concrete structures considerably modifies the physical and mechanical properties of plain cement-based concrete which is brittle in nature with low flexural and tensile strength compared to its intrinsic compressive strength. This paper presents an overview of the work carried out on the use of SF as reinforcement in cement-based concrete matrix. Reported properties in this study are fresh properties, mechanical and durability of the blended concretes.

Dynamic punching shear tests of flat slab-column joints with 5D steel fibers

  • Alvarado, Yezid A.;Torres, Benjamin;Buitrago, Manuel;Ruiz, Daniel M.;Torres, Sergio Y.;Alvarez, Ramon A.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.281-292
    • /
    • 2022
  • This study aimed to analyze the dynamic punching shear performance of slab-column joints under cyclic loads with the use of double-hooked end (5D) steel fibers. Structural systems such as slab-column joints are widely found in infrastructures. The susceptibility to collapse of such structures when submitted to seismic loads is highly dependent on the structural performance of the slab-column connections. For this reason, the punching capacity of reinforced concrete (RC) structures has been the subject of a great number of studies. Steel fibers are used to achieve a certain degree of ductility under seismic loads. In this context, 5D steel hooked fibers provide high levels of fiber anchoring, tensile strength and ductility. However, only limited research has been carried out on the performance under cyclic loads of concrete structural members containing steel fibers. This study covers this gap with experimental testing of five different full-scale subassemblies of RC slab-column joints: one without punching reinforcement, one with conventional punching reinforcement and three with 5D steel fibers. The subassemblies were tested under cyclic loading, which consisted of applying increasing lateral displacement cycles, such as in seismic situations, with a constant axial load on the column. This set of cycles was repeated for increasing axial loads on the column until failure. The results showed that 5D steel fiber subassemblies: i) had a greater capacity to dissipate energy, ii) improved punching shear strength and stiffness degradation under cyclic loads; and iii) increased cyclic loading capacity.

Behavior of durable SFRC Structures for the Protection of Underground Environment (토양과 지하수를 보호하기 위한 구조물에 있어서 강섬유콘크리트의 특성)

  • 강보순;심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.329-334
    • /
    • 2001
  • In this paper, the crack properties of steel fiber reinforced concrete (SFRC) structures for environment by experimental and analytical methods are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete.

  • PDF

A Experimental Study on Fatigue Behavior of SFRC Beams (강섬유철근콘크리트보의 피로거동에 대한 실험적 연구)

  • 강보순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.443-452
    • /
    • 2001
  • Fatigue behavior of reinforced concrete(RC) and steel fiber reinforced concrete(SFRC) beams has been experimentally investigated. Fatigue behavior influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and load ratio $P_{u}/P_{o}$. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack widths and increases stiffness, and thus enhances the behavior in serviceability limit states also for high cyclic fatigue loading.

  • PDF

Fatigue Behavior of SFRC Elements under High Cyclic Loading (사용반복하중에 대한 강섬유철근콘크리트 부재의 피로거동)

  • 강보순;황성춘;오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.431-438
    • /
    • 2001
  • Fatigue behavior of reinforced concrete(RC) and steel fiber reinforced concrete(SFRC) elements has been experimentally investigated. Fatigue behavior influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and load ratio $P_{u}$ $P_{o}$. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack widths and increases stiffness, and thus enhances the behavior in serviceability limit states also for high cyclic fatigue loadingngng

  • PDF

Dynamic Behavior of Steel Fiber Reinforced Concrete (강섬유콘크리트의 동적거동)

  • 강보순;심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.379-384
    • /
    • 2003
  • In this paper, dynamic behavior of steel fiber reinforced concrete(SFRC) by experimental method is discussed. Because of its improved ability to dissipate energy, impact resistance and fatigue behavior, SFRC has a better dynamic behavior than that of plain concrete. Dynamic behavior is influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and the stress level. Impact resistance and damping in the SFRC has been evaluated from dynamic experimental test data at various levels of cracked states in the elements

  • PDF

Crack Control of Concrete Slab Track System (콘크리트 슬래브궤도의 균열제한)

  • Kang Bo-Soon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.862-867
    • /
    • 2004
  • In this paper, the crack properties of steel fiber reinforced concrete (SFHC) beams by experimental method are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and the stress level. Crack width and crack number in the SFRC beams havebeen evaluated from experimental test data at various levels in the beams.

  • PDF

Flexural-Shear Behavior of Steel Fiber Reinforced High Strength Concrete Beams (훅트강섬유보강 고강 콘크리트 보의 휨전단 거동)

  • 한형섭;박인철;김명성;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.567-572
    • /
    • 1999
  • Experimental study was conducted to investigate the flexural-shear behavior of hooked steel fiber reinforced high strength concrete (SFRHC) beams. Twenty beams with shear span-depth ratio of 1.45 were tested, of which variables were the contents of steel fiber with aspect ratio of 60, tension reinforcement ratio and concrete compressive of 60MPa and 80MPa. Test results has shown that shear failure of the beams were changed into flexural-shear failure or flexural failure according to increasing steel fiber content, that SFRHC with slump of 15cm over and fiber volume ratio of 1.5% was possible in practice, and that proper volume ratio of steel fiber was 1.5%.

  • PDF

Damage and stiffness research on steel shape steel fiber reinforced concrete composite beams

  • Xu, Chao;Wu, Kai;Cao, Ping zhou;Lin, Shi qi;Xu, Teng fei
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.513-525
    • /
    • 2019
  • In this work, an experimental research has been performed on Steel Fiber-Steel Reinforced Concrete (SFSRC)specimens subjected to four-point bending tests to evaluate the feasibility of mutual replacement of steel fibers and conventional reinforcement through studying failure modes, load-deflection curves, stiffness of characteristic points, stiffness degradation curves and damage analysis. The variables considered in this experiment included steel fiber volume percentage with and without conventional reinforcements (stirrups or steel fibers) with shear span depth ratios of S/D=2.5 and 3.5. Experimental results revealed that increasing the volume percentage of steel fiber decreased the creation and propagation of shear and bond cracks, just like shortening the stirrups spacing. Higher crack resistance and suturing ability of steel fiber can improve the stability of its bearing capacity. Both steel fibers and stirrups improved the stiffness and damage resistance of specimens where stirrups played an essential role and therefore, the influence of steel fibers was greatly weakened. Increasing S/D ratio also weakened the effect of steel fibers. An equation was derived to calculate the bending stiffness of SFSRC specimens, which was used to determine mid span deflection; the accuracy of the proposed equation was proved by comparing predicted and experimental results.