• Title/Summary/Keyword: Steel tube

Search Result 1,102, Processing Time 0.033 seconds

A Study on the Drag and Heat Transfer Reduction Phenomena and Degradation Effects of the Viscoelastic Fluids (점탄성유체의 저항 및 열전달 감소현상과 퇴화의 영향에 관한 연구)

  • Eum, C.S.;Jeon, C.Y.;Yoo, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1990
  • The drag and heat transfer reduction phenomena and degradation effects of drag reducing polymer solutions which are known as the viscoelastic fluids are investigated experimentally for the turbulent circular tube flows. Two stainless steel tubes are used for the experimental flow loops. Aqueous solutions of Polyacrylamide Separan AP-273 with concentrations from 300 to 1000 wppm are used as working fluids. Flow loops are set up to measure the friction factors and heat transfer coefficients of test tubes in the once-through system and the recirculating flow system. Test tubes are heated by power supply directly to apply constant heat flux boundary conditions on the wall. Capillary tube viscometer and falling ball viscometer are used to measure the viscous characteristics of fluids and the characteristic relaxation time of a fluid is determined by the Powell-Eyring model. The order of magnidude of the thermal entrance length of a drag reducing polymer solution is close to the order of magnitude of the laminar entrance length of Newtonian fluids. Dimensionless heat transfer coefficients of the viscoelastic non-Newtonian fluids may be represented as a function of flow behavior index n and newly defined viscoelastic Graetz number. As degradation continues viscosity and the characteristic relaxation time of the testing fluids decrease and heat transfer coefficients increase. The characteristic relaxation time is used to define the Weissenberg number and variations of friction factors and heat transfer coefficients due to degradation are presented in terms of the Weissenberg number.

  • PDF

in Vitro Embryo Production Following Transvaginal Follicular Oocyte Aspiration from Holstein Cows Using a Simple Aspiration Apparatus (간이 난자채취기를 이용한 젖소로부터 난초란의 채취와 체외수정란의 생산)

  • 김일화;손동수;이호준;이동원;최선호;서국현;양병철;이광원
    • Journal of Embryo Transfer
    • /
    • v.12 no.1
    • /
    • pp.111-116
    • /
    • 1997
  • The present study was carried out to produce in vitro fertilized embryos with immature follicular oocytes collected by transvaginal aspiration from Holstein cows. A simple aspiration apparatus consists of two stainless steel tubes, an inner tube (needle holder; 1.2cmdiameter, 55cm long) and an outer tube (1.5cm diameter, 4Scm long), and a hand-operated vacuum pump was used. Under epidural anesthesia, the needle guide was passed into the vagina of the cow to a point next to the cervix. An ovary was placed against the wall of the vagina over the end of the aspiration needle by rectal manipulation. As the needlepassed into the ovary, an assistant was asked to apply vacuum(l00mrnHg) and the ovary was manipulated back and forth in all directions over the needle. When all sites of the ovary was aspirated, the needle was withdrawn and the needle guide was moved to the other side of ovary and the procedure was repeated. When the oocyte aspiration procedure was finished, collected fluid was transported to laboratory. Oocytes surrounded with at least 1 layer of cumulus cells were matured, fertilized and cultured in vitro. The results were as follows; Ninety seven oocytes were collected by transvaginal aspiration from seventeen Holstein cows(5.7 /head). The number of oocytes surrounded with at least 1 layer of cumulus cells were 60(61.9%). Following in vitro maturation, fertilization and culture, the cleavage and development rate to morula+blastocyst were 83.3% and 30.0%, respectively. From this study, transferable in vitro fertilized embryos could be produced with imma- ture follicular oocytes collected by transvaginal aspiration from Holstein cows using a simple aspiration apparatus.

  • PDF

Inverter type High Efficency Neon Transformers for Neon Tubes (인버터식 고효율 네온관용 변압기)

  • 변재영;김윤호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.22-29
    • /
    • 2002
  • The conventional neon transformer systems are very bulky and heavy because it consist of leakage type transformers made of silicon steel plates. In addition, it has problems in noise by a neon transformer and in possibilities of fire and electrical shock when neon tubes are destroyed. A protection circuit is designed for all types of neon transformer loaded with one or more neon tubes. Whenever the neon tube fails to be started up, comes to the life end, encounters faults with open-circuits at the output terminals of the neon transformer, the protection circuit will be initiated to avoid more critical hazards. The input of the transformer is automatically cut off when the abnormal condition occurs, preventing waste of no-load power. To improve such problems, in this paper, a new type of neon power supply systems for neon tube is designed and implemented using inverter type circuits and a newly designed lightweight transformer. In the developed neon transformer system, a 60[Hz]power input is converted to 20[KHz]high frequency using half-wave inverters, thereby the transformer reduces its size by 1/5 in volume and 1/10 in weight.

Liquid Film Thickness Measurement by An Ultrasonic Pulse Echo Method (초음파 Pulse-echo 방법에 의한 액체막 두께 측정)

  • Jong Ryul Park;Jong-Ryul Park;Se Kyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-33
    • /
    • 1985
  • The main purpose of this work is to investigate the effects of the wall thickness, the ultrasonic frequency, and the acoustic impedance of wall material on the liquid-film thickness measurement by an ultrasonic pulse echo method. A series of liquid-film thickness measurements in a horizontal air-water stratified system was performed employing a plate-type and a tube-type test sections. Measurements were repeated changing (1) the wall thickness of the test section and (2) the transducer frequency. Also, in an effort to improve the accuracy of the measurement and to exam me the effect of acoustic impedance of wall material on the measurement by an ultrasonic technique, two different stand-off rods, one made of stainless steel and the other polyacrylate, were used in the liquid-film thickness measurement. These experimental results are discussed and compared with the actual film thicknesses.

  • PDF

Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers

  • Feng, Hongwei;Shen, Daoming;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.711-731
    • /
    • 2020
  • This paper deals with free vibration of FG sandwich annular sector plates on Pasternak elastic foundation with different boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. The influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich plates is investigated in this research work. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper and bottom layers of the sandwich sectorial plates and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. A semi-analytic approach composed of 2D-Generalized Differential Quadrature Method (2D-GDQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future researches.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

Generation Rate and Content Variation of Manganese in Stainless Steel Welding (스테인레스 강 용접중 발생하는 망간의 발생량 및 함량변화에 관한 연구)

  • Yoon, Chung Sik;Kim, Jeong Han
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.254-263
    • /
    • 2006
  • Manganese has a role as both toxic and essential in humans. Manganese is also an essential component in the welding because it increases the hardness and strength, prevents steel from cracking of welding part and acts as a deoxidizing agent to form a stable weld. In this study, manganese generation rate and its content was determined in flux cored arc welding on stainless steel. Domestic two products and foreign four products of flux cored wires were tested in the well designed fume generation chamber as a function of input power. Welding fume was measured by gravimetric method and metal manganese was determined by inductively coupled plasma-atomic emission spectrophotometer. The outer shell of the flux cored wire tube and inner flux were analyzed by scanning electron microscopy to determine their metal compositions. Manganese generation rate($FGR_{mn}$) was increased as the input power increased. It was 16.3 mg/min at the low input power, 38.1 mg/min at the optimal input power, and up to 55.4 mg/min at the high input power. This means that $FGR_{mn}$ is increased at the work place if welder raise the current and/or voltage for the high productivity. The slope coefficient of $FGR_{mn}$ was smaller than that of the generation rate of total fume(FGR). Also, the correlation coefficient of $FGR_{mn}$ was 0.65 whereas that of FGR is 0.91. $FGR_{mn}$ was equal or higher in the domestic products than that of the foreign products although FGR was similar. From the electron microscopic analytical data, we concluded that outer shell of the wire was composed mainly of iron, chromium, nickel and less than 1.2 % of manganese. There are many metal ingredients such as iron, silica, manganese, zirconium, titanium, nickel, potassium, and aluminum in the inner flux but they were not homogeneous. It was found that both $FGR_{mn}$ and content of manganese was higher and more varied in domestic flux cored wires than those of foreign products. To reduce worker exposure to fumes and hazardous component at the source, further research is needed to develop new welding filler materials that improve the quality of flux cored wire in respect to these points. Welder should keep in mind that the FGR, $FGR_{mn}$ and probably the generation rate of other hazardous metals were increased as the input power increase for the high productivity.

An Analytical Study on the Strength Behavior of Column-Foundation Connection with High Tension Bolts (고장력 볼트 기둥-기초 연결부의 강도특성에 관한 해석적 연구)

  • Hwang, Dong A;Hwang, Won Sup;Ham, Jun Su;Jeong, Jin Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • In order to suggest a reasonable design for the circular concrete filled tube steel column-foundation connection applying high-tension bolts, Overall structural behavior and characteristics according to various variables of column-foundation connection are numerically analyzed using a commercial FE analysis program, ABAQUS. To that goal, finite element analysis is conducted on the basis of the previous study replacing anchor bolts to high-tension bolts, and the analytical results are validated by comparison with experimental results. Also, the various variables(embedded depth and grade of anchor, and height and thickness of rib) involved in behavior of the column-foundation connection are selected through analyzing the current design criteria, and the characteristics of the column-foundation connection are compared and analyzed according to the various variables. In case of the anchor bolts, Applying the high-tension bolts is more advantage and securing the embedded depth beyond 0.5D is recommendable. In case of the rib, a minimum of 0.5D for rib's height and $0.4t_b$ for rib's thickness should be secured to develop the structural performance.