• Title/Summary/Keyword: Steel tube

Search Result 1,112, Processing Time 0.022 seconds

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

Development and Application of CFT without Fire Protection using High Performance Steel and Concrete

  • Hong, Seok-Beom;Kim, Woo-Jae;Park, Hee-Gon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.272-281
    • /
    • 2013
  • Concrete filled tube (CFT) columns, which consist of a steel tube filled with concrete, combine the benefits of the two materials. The steel tube provides a confining pressure to the concrete, while the local buckling of steel plate can be prevented by the concrete core. CFT columns also have a high fire resistance due to the heat storage effect of concrete under fire. For this reason, it is possible to develop CFT columns without fire protection measures. CFT columns without fire protection have many advantages, including quality control, cost reduction, better space efficiency and a shorter construction period. Due to these advantages, studies on the development of CFT columns without fire protection measures have been performed. However, CFT columns lose their bearing capacity under fire because the steel tube is exposed to the outside. As a result, the structure is collapsed, causing significant damage. In this research, we made a CFT column using high strength concrete (100 MPa) and high strength steel (800 MPa). We use steel fiber and nylon fiber with concrete to provide fire resistance. We perform the fresh concrete experiment and investigate the fire resistance of the CFT column (${\Box}400{\times}400{\times}15{\times}3000mm$) under loading. To investigate the effect of steel fiber on increasing fire resistance, we compare the fire resistance time according to the steel fiber. Through the test, it was found that the CFT specimen with steel fiber had better fire resistance performance than other cases.

Experimental and analytical behaviour of cogged bars within concrete filled circular tubes

  • Pokharel, Tilak;Yao, Huang;Goldsworthy, Helen M.;Gad, Emad F.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1067-1085
    • /
    • 2016
  • Recent research on steel moment-resisting connection between steel beams and concrete filled steel tubes has shown that there are considerable advantages to be obtained by anchoring the connection to the concrete infill within the tube using anchors in blind bolts. In the research reported here, extensive experimental tests and numerical analyses have been performed to study the anchorage behaviour of cogged deformed reinforcing bars within concrete filled circular steel tubes. This data in essential knowledge for the design of the steel connections that use anchored blind bolts, both for strength and stiffness. A series of pull-out tests were conducted using steel tubes with different diameter to thickness ratios under monotonic and cyclic loading. Both hoop strains and longitudinal strains in the tubes were measured together with applied load and slip. Various lead-in lengths before the bend and length of tailed extension after the bend were examined. These dimensions were limited by the dimensions of the steel tube and did not meet the requirements for "standard" cogs as specified in concrete standards such as AS 3600 and ACI 318. Nevertheless, all of the tested specimens failed by bar fracture outside the steel tubes. A comprehensive 3D Finite Element model was developed to simulate the pull-out tests. The FE model took into account material nonlinearities, deformations in reinforcing bars and interactions between different surfaces. The FE results were found to be in good agreement with experimental results. This model was then used to conduct parametric studies to investigate the influence of the confinement provided by the steel tube on the infilled concrete.

Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading

  • Wan, Cheng-Yong;Zha, Xiao-Xiong
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.571-597
    • /
    • 2016
  • A new unified design formula for calculating the composite compressive strength of the axially loaded circular concrete filled double steel tubular (CFDST) short and slender columns is presented in this paper. The formula is obtained from the analytic solution by using the limit equilibrium theory, the cylinder theory and the "Unified theory" under axial compression. Furthermore, the stability factor of CFDST slender columns is derived on the basis of the Perry-Robertson formula. This paper also reports the results of experiments and finite element analysis carried out on concrete filled double steel tubular columns, where the tested specimens include short and slender columns with different steel ratio and yield strength of inner tube; a new constitutive model for the concrete confined by both the outer and inner steel tube is proposed and incorporated in the finite element model developed. The comparisons among the finite element results, experimental results, and theoretical predictions show a good agreement in predicting the behavior and strength of the concrete filled steel tubular (CFST) columns with or without inner steel tubes. An important characteristic of the new formulas is that they provide a unified formulation for both the plain CFST and CFDST columns relating to the compressive strength or the stability bearing capacity and a set of design parameters.

Confinement coefficient of concrete-filled square stainless steel tubular stub columns

  • Ding, Fa-xing;Yin, Yi-xiang;Wang, Liping;Yu, Yujie;Luo, Liang;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.337-350
    • /
    • 2019
  • The objective of this paper is to investigate the confinement coefficient of concrete-filled square stainless steel tubular (CFSSST) stub columns under axial loading. A fine finite 3D solid element model was established, which utilized a constitutive model of stainless steel considering the strain-hardening characteristics and a triaxial plastic-damage constitutive model of concrete with features of the parameter certainty under axial compression. The finite element analysis results revealed that the increased ultimate bearing capacity of CFSSST stub columns compared with their carbon steel counterparts was mainly due to that the composite action of CFSSST stub columns is stronger than that of carbon steel counterparts. A further parametric study was carried out based on the verified model, and it was found that the stress contribution of the stainless steel tube is higher than the carbon steel tube. The stress nephogram was simplified reasonably in accordance with the limit state of core concrete and a theoretical formula was proposed to estimate the ultimate bearing capacity of square CFSSST stub columns using superposition method. The predicted results showed satisfactory agreement with both the experimental and FE results. Finally, the comparisons of the experimental and predicted results using the proposed formula and the existing codes were illustrated.

Analysis of Internal Flow for Component Cooling Water Heat Exchanger in CANDU Nuclear Power Plants (중수로 기기냉각수 열교환기 내부 유동 해석)

  • Song, Seok-Yoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.2
    • /
    • pp.33-41
    • /
    • 2012
  • The component cooling water heat exchangers are critical components in a nuclear power plant. As the operation years of the heat exchanger go by, the maintenance costs required for continuous operation also increase. Most heat exchangers have carbon steel shells, tube support plates and flow baffles. The titanium tube is susceptible to flow induced vibration. The damage on carbon steel tube support rod and titanium tube around cooling water entrance area is inevitable. Therefore, analysis of internal flow around the component cooling water entrance and tube channel is a good opportunity to seek for failure prevention practice and maintenance method. The numerical study was carried out by FLUENT code to find out the causes of tube failure and its location.

Structural Performance Evaluation of Joint between PHC Pile and Steel Tube Column (강관기둥과 PHC 파일을 연결하는 접합부에 관한 구조성능평가)

  • Kim, Sang-Bong;Oh, Jin-Tak;Kim, Young-Sik;Ju, Young-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.85-93
    • /
    • 2015
  • This paper presents a foundation pile to steel column connection that can resist large magnitude of moment and that can be easy installed. The developed joint has spherical shape and it is given the name HAT joint to mean Hallow half-sphere steel joint. Four types of HAT joints are developed. Namely, H-type, T-type, P-type and K-type. In this paper I will talk about the performance assessment of T-type(Tube Column) and P-type(Pile Column) of HAT joints with finite element analysis and experiment on a full scale model is presented.

Buckling-restrained brace with CFRP encasing: Mechanical behavior & cyclic response

  • Razavi, S. Ali;Kianmehr, Amirhossein;Hosseini, Abdollah;Mirghaderi, S. Rasoul
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.675-689
    • /
    • 2018
  • Buckling-restrained braces (BRBs) have received considerable attention in seismic design of various types of structures. Conventional BRBs are composed of steel core and surrounding steel tube filled with concrete. Eliminating the steel tube can be advantageous to BRB. In this study the idea of replacing the steel tube by CFRP layers in BRBs is proposed. The advantages of this type of BRB are mentioned, and its design criteria are introduced. The construction procedure of two BRB specimens is described. The specimens are uniaxially tested based on moderate, and severe earthquake levels and the performance of the specimens is investigated. The backbone curves resulted from the hysteresis curve are presented for the design proposes. The results of this study show that CFRP layers can effectively provide the expected performance of the encasing, and the proposed BRB can be considered a viable alternative to the conventional BRBs.

A Study on the Load Carrying Capacity and Deformation Capacity of the Internal Anchors Welded Cold Formed Concrete Filled Columns (내부앵커형 콘크리트 충전 기둥의 내력 및 변형능력에 관한 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.347-357
    • /
    • 2013
  • Recently, In recognition of outstanding structural performance the use of Concrete Filled steel Tube(CFT) columns has been increased. Research is ongoing that effective use of cross-sectional because steel strength development and rising prices. In this Lab, suggests new shape by Thin steel plates bent to be L-channel welded to form square steel tube to maximize efficiency of the cross section. In addition, since the rib placed at the center of the tube width acts as an anchor; higher load capacity of buckling is acceptable. we have developed New shape welded built-up square tube for broader usability which were bent to be L-shaped and thin Plate each unit member were welded. In order to apply the new shape built-up square columns, we predicted structure behavior, stress distribution with parameter Width thickness ratio. The experimental results presented in standards and even exceed the b/t of the rib anchors installed in the role due to exert enough strength and deformation to improve performance was favorable.

Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network

  • Nguyen, Mai-Suong T.;Thai, Duc-Kien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.415-437
    • /
    • 2020
  • Circular concrete filled steel tube (CFST) columns have an advantage over all other sections when they are used in compression members. This paper proposes a new approach for deriving a new empirical equation to predict the axial compressive capacity of circular CFST columns using the Artificial Neural Network (ANN). The developed ANN model uses 5 input parameters that include the diameter of circular steel tube, the length of the column, the thickness of steel tube, the steel yield strength and the compressive strength of concrete. The only output parameter is the axial compressive capacity. Training and testing the developed ANN model was carried out using 219 available sets of data collected from the experimental results in the literature. An empirical equation is then proposed as an important result of this study, which is practically used to predict the axial compressive capacity of a circular CFST column. To evaluate the performance of the developed ANN model and the proposed equation, the predicted results are compared with those of the empirical equations stated in the current design codes and other models. It is shown that the proposed equation can predict the axial compressive capacity of circular CFST columns more accurately than other methods. This is confirmed by the high accuracy of a large number of existing test results. Finally, the parametric study result is analyzed for the proposed ANN equation to consider the effect of the input parameters on axial compressive strength.