DOI QR코드

DOI QR Code

A Study on the Load Carrying Capacity and Deformation Capacity of the Internal Anchors Welded Cold Formed Concrete Filled Columns

내부앵커형 콘크리트 충전 기둥의 내력 및 변형능력에 관한 연구

  • Kim, Sun Hee (Department of Architectural Engineering, University of Seoul) ;
  • Yom, Kong Soo (Harmony Structural Engineering) ;
  • Choi, Sung Mo (Department of Architectural Engineering, University of Seoul)
  • 김선희 (서울시립대학교, 건축공학부) ;
  • 염경수 ((주)하모니구조엔지니어링) ;
  • 최성모 (서울시립대학교, 건축공학부)
  • Received : 2013.03.04
  • Accepted : 2013.07.23
  • Published : 2013.08.27

Abstract

Recently, In recognition of outstanding structural performance the use of Concrete Filled steel Tube(CFT) columns has been increased. Research is ongoing that effective use of cross-sectional because steel strength development and rising prices. In this Lab, suggests new shape by Thin steel plates bent to be L-channel welded to form square steel tube to maximize efficiency of the cross section. In addition, since the rib placed at the center of the tube width acts as an anchor; higher load capacity of buckling is acceptable. we have developed New shape welded built-up square tube for broader usability which were bent to be L-shaped and thin Plate each unit member were welded. In order to apply the new shape built-up square columns, we predicted structure behavior, stress distribution with parameter Width thickness ratio. The experimental results presented in standards and even exceed the b/t of the rib anchors installed in the role due to exert enough strength and deformation to improve performance was favorable.

최근, 콘크리트 충전강관 기둥(CFT)은 우수한 구조성능을 인정받아 현장적용이 활발하게 이뤄지고 있다. 한편 강재개발과 가격 상승으로 인해 단면을 효율적으로 사용하고자 하는 연구가 지속적으로 진행되고 있다. 본 연구실에서는 단면의 효율을 극대화 하기 위해 얇은 L형 플레이트 4개를 각형강관으로 형성한 단면을 제안한다. 이로 인해 강관 내부에 형성된 리브는 폭 중앙에 위치하고 있어 콘크리트와의 앵커역할이 가능하다. 또한 동일한 단면적을 갖는 일반 CFT기둥에 비해 우수한 좌굴내력과 변형성능이 발휘됨을 실험으로 평가되었다. 본 연구에서는 활용범위를 넓히고자 얇은 강판으로 조립된 신형상 기둥을 제안하며 구조적 성능을 재평가 하고자 한다. 실험 주요변수 폭두께비(b/t: 78,96,107) 이다. 실험결과 규준에서 제시하고 있는 폭두께비를 초과했음에도 내부에 설치된 리브의 앵커역할로 인해 충분한 내력을 발휘하며, 변형성능 향상에 유리한 것으로 분석되었다.

Keywords

References

  1. 김창수, 박홍근, 최인락, 정경수, 김진호 (2010) 800강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조성능, 한국강구조학회논문집, 한국강구조학회, 제22권, 제 5호, pp.497-509. Kim, C.S., Park, H.K., Choi, I.R., Chung, K.S., and Kim, J.H. (2010) Strength performance on concrete-encased steel column using 800MPa steel and 100MPa concrete, Journal of Korean Society of Steel Construction, KSSC, Vol. 22, No. 5, pp. 497-509 (in Korean).
  2. 최익락, 정경수 김진호 홍건호 (2012) 이종강종을 사용한 고강도 CFT합성부재의 구조성능, 한국강구조학회논문집, 한국강구조학회, 제24권, 제6호, pp.711-723. Choi, I.R., Chung, K.S., Kim, J.H., and Hong, G.H. (2012) Strength performance of high-strength concrete filled steel tube steel columns using different strength steels. Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No. 6, pp.711-723 (in Korean).
  3. 김선희, 최영환 최성모 (2012) HSB600원형 강관기둥의 거동에 대한 실험적 연구, 한국강구조학회논문집, 한국강구조학회, 제24권, 제6호 pp.743-751. Kim, S.H., Choi, Y.H., and Choi, S.M. (2012) Experimental study on the behavior of circular steel tube columns using HSB600 steel, Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No. 6, pp.743-751 (in Korean).
  4. O'Shea, M.D. and Bridge, R.Q. (1997) Behaviour of thin-walled box sections with lateral restraint. Department of Civil Engineering Research Report No. R739, The University of Sydney, Sydney, Australia.
  5. Ge, H. and Usami, T. (1992) Strength of Concrete- Filled Thin-Walled Steel Box Columns : Experiment, Journal of Structural Engineering, Vol. 118, No. 11, pp.3036-3053. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3036)
  6. Huang, C.S., Cheung, L.L., Yeh, Y.-K., Yeh, C.K., Lu, L.Y., and Liu, G.-Y. (1998) Review of researches on concrete-filled steel tubes. Rep. of National Center for Research on Earthquake Engineering, No.NCREE-98-012, Taipei, Taiwan (in Chinese).
  7. Zhong, T., Lin, H.H., and Zhibin, W. (2005), Experimental Behaviour of stiffened concrete filled thin walled hollow steel structural (HSS) stub Columns, Journal of Constructional Steel Research, Vol. 61, No 7, pp.962-983. https://doi.org/10.1016/j.jcsr.2004.12.003
  8. Cai, J. and He, Z.Q. (2006) Axial load behavior of square CFT stub column with binding bars. Journal of Constructional Steel Research, Vol. 62, pp.472-483. https://doi.org/10.1016/j.jcsr.2005.09.010
  9. Mursi, M. and B. Uy. (2003) Strength of concrete filled steel box columns incorporating interaction buckling, Vol. 129, No. 5, pp.626-639. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(626)
  10. Bahrami, A, Badaruzzaman, W.H.W., and Osman, S.A. (2011) Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading, Structural Engineering and mechanics, Vol. 39, No. 3, pp.383-398. https://doi.org/10.12989/sem.2011.39.3.383
  11. Lee, S.H., Kim, S.H., Kim, Y.H., Zhong, T., and Choi, S.M. (2011) Water pressure test and analysis for concrete steel square columns, Journal of Constructional Steel Research, Vol. 67, No. 7, pp.1065 -1077. https://doi.org/10.1016/j.jcsr.2011.02.012
  12. 대한건축학회 (2009) 건축구조 설계 기준(KBC-2009). AIK (2009) Korea Building Code and Commentary (KBC-2009), Architectural Institute of Korea, Korea (in Korean).
  13. AISC (2005) Steel Construction Manual, American Institute of Steel Construction Ins.
  14. European 4 (1992) Design of Composite Structures, Part1.1: General Rules of Building, ENV 1994 -1-1, CEN, Brussel.
  15. KS B 0801 (2005) 금속재료 인장시험편, 산업자원부 기술표준원. KS B 0801 (2007) Test Pieces for Tensile test for Metallic Materials, Korea Agency for Technology and Standards (in Korean).

Cited by

  1. The Performance Evaluation of Beam to CFT Column Connection Stiffened by Ring Diaphragm vol.9, pp.3, 2018, https://doi.org/10.11004/kosacs.2018.9.3.106
  2. 외다이아프램 응력경로에 따른 용접조립 각형기둥-보 접합부의 내진성능 평가 vol.26, pp.4, 2014, https://doi.org/10.7781/kjoss.2014.26.4.311
  3. 관통형 다이아프램을 갖는 조립형 콘크리트 충전 각형 합성기둥-보 접합부의 내진성능 vol.26, pp.5, 2013, https://doi.org/10.7781/kjoss.2014.26.5.431
  4. 내화성능 개선을 위한 강섬유 보강 내부 앵커형 각형강관 합성기둥의 실험연구 vol.26, pp.6, 2014, https://doi.org/10.7781/kjoss.2014.26.6.499
  5. 강섬유 콘크리트가 충전된 용접조립 각형강관 기둥의 구조성능 실험연구 vol.27, pp.1, 2013, https://doi.org/10.7781/kjoss.2015.27.1.013
  6. 시공단계를 고려한 피복충전형 콘크리트충전 각형기둥의 구조적 거동 분석 vol.27, pp.1, 2015, https://doi.org/10.7781/kjoss.2015.27.1.043
  7. 강섬유 콘크리트 혼입율에 따른 내부앵커형 콘크리트 충전기둥 내화성능에 관한 해석적 연구 vol.28, pp.1, 2013, https://doi.org/10.7781/kjoss.2016.28.1.023
  8. Lateral Structural Performance of Small-Size Grout-Filled Tubular Members vol.19, pp.1, 2013, https://doi.org/10.9798/kosham.2019.19.1.257
  9. Evaluation of Compression Strengths of Octagonal Concrete-Filled Tube Columns vol.31, pp.4, 2019, https://doi.org/10.7781/kjoss.2019.31.5.349
  10. Evaluation of Eccentric Axial Load Test of Concrete Filled Tube Columns According to Factor of Thin-Walled Section vol.32, pp.2, 2020, https://doi.org/10.7781/kjoss.2020.32.2.085
  11. Structural Experiment of the Binding Frame for the Restricting Effect of a Mega Column (width 1 m) vol.32, pp.2, 2013, https://doi.org/10.7781/kjoss.2020.32.2.105