• 제목/요약/키워드: Steel transmission tower

검색결과 54건 처리시간 0.02초

Experimental Study of Steel Transmission Tower using Partially Scaled Model (송전철탑 부분축소모형의 실험적 연구)

  • Kim, Jong-Min;Kim, Seung-Jun;Park, Jong-Sup;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • 제22권4호
    • /
    • pp.335-344
    • /
    • 2010
  • This paper presents both of an investigation on the ultimate responses and a verification study on the structural methodology using beam-truss element of steel transmission towers using experimental study. The partially scaled tower which verified with analytical model was fabricated and the horizontal load was applied up to failure in the laboratory. The structural methodology for finite element analyses was verified against experimental results and both the ultimate load capacity and collapse mechanism were shown in the test to give sufficiently accurate results with those of analytical study. It was shown as well that the ultimate failure is primarily attributed to instability of the main posts in the leg parts.

Bayesian structural damage detection of steel towers using measured modal parameters

  • Lam, Heung-Fai;Yang, Jiahua
    • Earthquakes and Structures
    • /
    • 제8권4호
    • /
    • pp.935-956
    • /
    • 2015
  • Structural Health Monitoring (SHM) of steel towers has become a hot research topic. From the literature, it is impractical and impossible to develop a "general" method that can detect all kinds of damages for all types of structures. A practical method should make use of the characteristics of the type of structures and the kind of damages. This paper reports a feasibility study on the use of measured modal parameters for the detection of damaged braces of tower structures following the Bayesian probabilistic approach. A substructure-based structural model-updating scheme, which groups different parts of the target structure systematically and is specially designed for tower structures, is developed to identify the stiffness distributions of the target structure under the undamaged and possibly damaged conditions. By comparing the identified stiffness distributions, the damage locations and the corresponding damage extents can be detected. By following the Bayesian theory, the probability model of the uncertain parameters is derived. The most probable model of the steel tower can be obtained by maximizing the probability density function (PDF) of the model parameters. Experimental case studies were employed to verify the proposed method. The contributions of this paper are not only on the proposal of the substructure-based Bayesian model updating method but also on the verification of the proposed methodology through measured data from a scale model of transmission tower under laboratory conditions.

Joint stress based deflection limits for transmission line towers

  • Gayathri, B.;Ramalingam, Raghavan
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.45-53
    • /
    • 2018
  • Experimental investigations have revealed significant mismatches between analytical estimates and experimentally measured deflections of transmission towers. These are attributed to bolt slip and joint flexibility. This study focuses on effects of joint flexibility on tower deflections and proposes criterions for permissible deflection limits based on the stresses in joints. The objective has been framed given that guidelines are not available in the codes of practices for transmission towers with regard to the permissible limits of deflection. The analysis procedure is geometric and material nonlinear with consideration of joint flexibility in the form of extension or contraction of the cover plates. The deflections due to bolt slip are included in the study by scaling up the deflections obtained from analysis by a factor. Using the results of the analysis, deflection limits for the towers are proposed by limiting the stresses in the joints. The obtained limits are then applied to a new full scale tower to demonstrate the application of the current study.

A Design of 150 meters high steal tower (150m 철탑의 설계 I)

  • 이재숙
    • 전기의세계
    • /
    • 제17권3호
    • /
    • pp.43-56
    • /
    • 1968
  • The design of this antenna tower on the publication had been prepared by writer in order to compare with that of towers for power transmission line or to show the differences on designs existing on their design standards. The design of this antenna tower is also featuring on the following points; (1) the height of tower is 150meters high, (2) combined steel angles are adopted besides angles, (3) the direction of 45degree wind is taken account into design, (4) the additional stresses of horizontal members located in the bending points of main posts are contemplated though these additional stressess are not shown on stress diagram.

  • PDF

TAPERED TUBULAR STEEL POLE FOR CABLE HEAD (케이블헤드 설치용 관형지지물)

  • Park, Tae-Dong;Kwon, Hyeog-Mun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.158-160
    • /
    • 1997
  • WHEN IT IS REQUIRED TO CONNECT OVERHEAD TRANSMISSION LINE WITH UNDERGROUND CABLE, PREVALENT METHOD WAS TO USE CABLE HEAD TYPICALLY MADE OF LATTICE STEEL STRUCTURE. BUT IN VIEW OF THE INCREASING DEMAND THAT STEEL STRUCTURE INSTALLED IN URBAN AREA AND/OR RESIDENTIAL AREA NEED TO MATCH WITH ENVIRONMENTAL SURROUNDINGS, THE UNSHAPELY LARGE-SIZED LATTICE STEEL STRUCTURE CAN NOT BE A PROPER ONE BECAUSE THAT IT IS NOT WELCOMED BY THE RESIDENTS AND ACCORDINGLY ITS INSTALLATION TENDS TO CONFRONT WITH CIVIL PETITION. AS AN ALTERNATIVE METHOD TO SETTLE AFOREMENTIONED UNFAVOURABLE SITUATION WE MAY BE UNDER, WE AR INTENDING TO DEVELOP THE CABLE HEAD MADE OF TAPERED TUBULAR STEEL POLE AND TO PUT IT TO PRACTICAL USE. THE ADVANTAGE WE CAN TAKE OF THE TAPERED TUBULAR STEEL POLE IS THAT IT CAN BE INSTALLED IN A VERY LIMITED SPACE MAXIMIZING THE UTILITY VALUE OF THE LAND AND THAT ITS SMART SHAPE WITH COLOUR COATING IN CONSIDERATION OF AESTHETIC AESTHETIC CAN BE IN GOOD HARMONY WITH THE SURROUNDINGS.

  • PDF

Study on the Life Cycle Management System of the Marine Transmission Tower Structures (해상철탑구조물의 수명관리방안 연구)

  • Pang, Gi-Sung;Song, Young-Chul;Yoon, Deok-Joong;Kim, Do-Gyeum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.281-284
    • /
    • 2006
  • The marine Transmission tower infrastructure erected in the SI-HWA lake is deteriorated and damaged by the various environment effect, and then, there is a possibility of going bad in the safety. The appropriate maintenance to ensure the security of the structure during life cycle is necessary. Specially the Jacket or the steel file foundation in the sea is apt to be corroded quickly. In this research, to establish life management system of 345kV Yonghung marine transmission tower structure, the actual durability research facility which can obtain the actual proof data is constructed. the maintenance guideline and procedure of the structure are established. Hereafter, there is a plan which will advance the research against the composition of the life prediction model, which is based on the data acquired from the actual durability research facility.

  • PDF

Probability density evolution analysis on dynamic response and reliability estimation of wind-excited transmission towers

  • Zhang, Lin-Lin;Li, Jie
    • Wind and Structures
    • /
    • 제10권1호
    • /
    • pp.45-60
    • /
    • 2007
  • Transmission tower is a vital component in electrical system. In order to accurately compute the dynamic response and reliability of transmission tower under the excitation of wind loading, a new method termed as probability density evolution method (PDEM) is introduced in the paper. The PDEM had been proved to be of high accuracy and efficiency in most kinds of stochastic structural analysis. Consequently, it is very hopeful for the above needs to apply the PDEM in dynamic response of wind-excited transmission towers. Meanwhile, this paper explores the wind stochastic field from stochastic Fourier spectrum. Based on this new viewpoint, the basic random parameters of the wind stochastic field, the roughness length $z_0$ and the mean wind velocity at 10 m heigh $U_{10}$, as well as their probability density functions, are investigated. A latticed steel transmission tower subject to wind loading is studied in detail. It is shown that not only the statistic quantities of the dynamic response, but also the instantaneous PDF of the response and the time varying reliability can be worked out by the proposed method. The results demonstrate that the PDEM is feasible and efficient in the dynamic response and reliability analysis of wind-excited transmission towers.

Capacity assessment of existing corroded overhead power line structures subjected to synoptic winds

  • Niu, Huawei;Li, Xuan;Zhang, Wei
    • Wind and Structures
    • /
    • 제27권5호
    • /
    • pp.325-336
    • /
    • 2018
  • The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.

Suggestion of Reasonable Analysis Model for Steel Transmission Tower Based on KEPCO Design Specifications (송전철탑 설계기준을 반영한 345kV급 송전철탑의 합리적인 구조해석모델 제안)

  • Chang, Jin Won;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • 제19권4호
    • /
    • pp.367-381
    • /
    • 2007
  • A transmission tower was designed using the structural methodology to assume a simple truss behavior. However, there is a big difference between a simple truss behavior and a real one. A suitable explanation of structural stability is that it is a semi-rigid connection and not the assumed hinged connection. This study proposes an alternative structural-analysis modeling strategy for the transmission tower design. The element models that were considered were the truss element model, the beam element model, and the combined beam-truss element model. This study includes linear static analysis, free-vibration analysis, and elastic buckling analysis with respect to the design load. The results of the analysis indicate that the axial forces, axial stresses, and maximum displacements of the three analytical models are very similar. However, the bending moments and stresses of the beam element model and of the combined beam-truss element model are significantly high. The results of the free-vibration and elastic buckling analyses show that the beam-truss model can be conservatively used for the transmission tower design.

Study on the bearing capacity of cold-formed steel under different boundary conditions in transmission towers

  • Han, Junke;Zhao, Xu;Tang, Zhenyun;Ma, Hua;Li, Zhenbao
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.665-672
    • /
    • 2017
  • Cold-formed steel is widely used in steel structures, especially in transmission towers, because of advantages such as low weight, high strength, excellent mechanical properties, etc. However, there is not a special design code for cold-formed steel use in transmission towers in China. For this study, a total of 105 compression members were tested statically to investigate the bearing capacity of cold-formed steel members under different boundary conditions in transmission towers. The test results were compared to the results predicted by the current design codes. For deeper insight, additional coupled members were simulated using finite element analysis. An improved design method was developed based on the experimental and analytical results.