• Title/Summary/Keyword: Steel support

Search Result 655, Processing Time 0.028 seconds

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei;Xu Shuo;Wang Qi;Xin Zhong Xin;Wei Hua Yong;Ma Feng Lin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.117-126
    • /
    • 2024
  • There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

Remarks on the use of Electric Arc Furnace (EAF) Steel Slag in Asphalt Mixtures for Flexible Pavements (Electric Arc Furnace (EAF) Steel Slag의 아스팔트 포장 혼합물 내 대체 골재로서 적용 가능성에 대한 고찰)

  • Falchetto, Augusto Cannone;Moon, Ki Hoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • PURPOSES : This paper, presents the results of a laboratory study aimed to verify the suitability of a particular type of Electric Arc Furnace (EAF) steel slag to be recycled in the lithic skeleton of both dense graded and porous asphalt mixtures for flexible pavements. METHODS : Cyclic creep and stiffness modulus tests were performed to evaluate the mechanical performance of three different asphalt mixtures (dense graded, porous asphalt, and stone mastic) prepared with two types of EAF steel slag. For comparison purposes, the same three mixtures were also designed with conventional aggregates (basalt and limestone). RESULTS : All the asphalt mixtures prepared with EAF steel slag satisfied the current requirements of the European standards, which support EAF steel slag as a suitable material for flexible pavement construction. CONCLUSIONS : Based on the experimental work, the use of waste material obtained from steel production (e.g. EAF steel slag) as an alternative in the lithic skeleton of asphalt mixtures can be a satisfactory and reasonable choice that fulfills the "Zero Waste" objective that many iron and steel industries have pursued in the past decades.

Seismic Behavior Investigation of the Corrugated Steel Shear Walls Considering Variations of Corrugation Geometrical Characteristics

  • Farzampour, Alireza;Mansouri, Iman;Hu, Jong Wan
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1297-1305
    • /
    • 2018
  • The corrugated steel plate shear walls have recently been proposed to address the seismic issues associated with simple steel plate shear walls; however, stiffness, strength, and ductility of the corrugated shear walls are significantly affected by varying the corrugation geometry under seismic loading. The present study investigates steel shear walls' models with corrugated or simple infill plates subjected to monotonic and cyclic loads. The performance of the corrugated steel plate is evaluated and then compared to that of the simple steel plates by evaluating the damping ratios and energy dissipation capability. The effect of corrugation profile angle, the existence of an opening, and the corrugation subpanel length are numerically investigated after validation of the finite element modeling methodology. The results demonstrate that incorporating corrugated plates would lead to better seismic damping ratios, specifically in the case of opening existence inside of the infill plate. Specifically, the corrugation angle of $30^{\circ}$ decreases the ultimate strength, while increasing the initial stiffness and ductility. In addition, the subpanel length of 100 mm is found to be able to improve the overall performance of shear wall by providing each subpanel appropriate support for the adjacent subpanel, leading to a sufficient buckling resistance performance.

Axial strengthening of RC columns by direct fastening of steel plates

  • Shan, Z.W.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.705-720
    • /
    • 2021
  • Reinforced concrete (RC) columns are the primary type of vertical support used in building structures that sustain vertical loads. However, their strength may be insufficient due to fire, earthquake or volatile environments. The load demand may be increased due to new functional usages of the structure. The deformability of concrete columns can be greatly reduced under high axial load conditions. In response, a novel steel encasement that distinguishes from the traditional steel jacketing that is assembled by welding or bolt is developed. This novel strengthening method features easy installation and quick strengthening because direct fastening is used to connect the four steel plates surrounding the column. This new connection method is usually used to quickly and stably connect two steel components by driving high strength fastener into the steel components. The connections together with the steel plates behave like transverse reinforcement, which can provide passive confinement to the concrete. The confined column along with the steel plates resist the axial load. By this way, the axial load capacity and deformability of the column can be enhanced. Eight columns are tested to examine the reliability and effectiveness of the proposed method. The effects of the vertical spacing between adjacent connections, thickness of the steel plate and number of fasteners in each connection are studied to identify the critical parameters which affect the load bearing performance and deformation behavior. Lastly, a theoretical model is proposed for predicting the axial load capacity of the strengthened RC columns.

The Development of Improved Construction and Design Method on Continuous Preflex Girder Bridge (연속 프리플렉스 거더교의 개선된 시공법과 설계식의 개발)

  • Koo, Min Se;Park, Young Je;Kim, Hun Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.183-194
    • /
    • 2005
  • In the previous construction method of continuous preflex composite girder bridge, we raised the inner support, and cast slab concrete innegative moment section, then lowered it to introduce compressive force in the slab. There were a few problems in the process such as the time required in raising the support and the bending of the camber. Therefore, this paper represents an improved construction method of continuous preflex composite girder by only moving downward the inner and outer supports to figure out problems in previous construction method. This paper proposes a design formula to find a proper cross section of preflex girder.

A Study on the Defect Classification of Low-contrast·Uneven·Featureless Surface Using Wavelet Transform and Support Vector Machine (웨이블렛변환과 서포트벡터머신을 이용한 저대비·불균일·무특징 표면 결함 분류에 관한 연구)

  • Kim, Sung Joo;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.1-6
    • /
    • 2020
  • In this paper, a method for improving the defect classification performance in steel plate surface has been studied, based on DWT(discrete wavelet transform) and SVM(support vector machine). Surface images of the steel plate have low contrast, uneven, and featureless, so that the contrast between defect and defect-free regions is not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. In order to improve the characteristics of these images, a synthetic images based on discrete wavelet transform are modeled. Using the synthetic images, edge-based features are extracted and also geometrical features are computed. SVM was configured in order to classify defect images using extracted features. As results of the experiment, the support vector machine based classifier showed good classification performance of 94.3%. The proposed classifier is expected to contribute to the key element of inspection process in smart factory.

Evaluation of Shear Capacity of Wide Beams Reinforced with GFRP and Steel Plates with Openings by Various Supporting Areas (지지부 조건에 따른 유공형 판으로 전단보강된 넓은 보의 전단성능 평가)

  • Kim, Heecheul;Ko, Myung Joon;Kim, Min Sook;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.269-275
    • /
    • 2016
  • In this paper, shear performance of concrete wide beams was evaluated through shear failure tests. The specimens were designed to have two continuous spans with a column at the center of the wide beam. Also the specimens were reinforced with plates with openings as shear reinforcements. For the test, total eight specimens, including five specimens were reinforced with steel plates and the other three specimens were reinforced with GFRP plates were manufactured. And the shear strengths obtained from the tests were compared with ones from the equation provided by ACI 318. Support width of wide beam, support section of wide beam and shear reinforcement material were considered as variables. The results showed that the support width was proportional to the increase of shear strength. Also, regardless of material type of shear reinforcement, the shear reinforcing effect was similar when the amount of shear reinforcement was the same.

Rehabilitation of a distressed steel roof truss - A study

  • Dar, M.A.;Subramanian, N.;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.567-576
    • /
    • 2017
  • Structural failures are undesirable events that devastate the construction industry resulting in loss of life, injury, huge property loss, and also affect the economy of the region. Roof truss failures occur mainly due to excessive loading, improper fabrication, deterioration, inadequate repair, etc. Although very rare, a roof truss may even fail due to inappropriate location of supports. One such case was reported from the recent failure of a steel roof truss used in an indoor stadium at Kargil in India. Kargil region, being mountainous in nature, receives heavy snowfall and hence the steel roof trusses are designed for heavy snow loads. Due to inappropriate support location, the indoor stadium's steel roof truss had failed under heavy snow load for which it was designed and became an interesting structural engineering problem. The failure observed was primarily in terms of yielding of the bottom chord under the supports, leading to partial collapse of the roof truss. This paper summarizes the results of laboratory tests and analytical studies that focused on the validation of the proposed remedial measure for rehabilitating this distressed steel roof truss. The study presents the evaluation of (i) significant reduction in strength and stiffness of the distressed truss resulting in its failure, (ii) desired recovery in both strength and stiffness of the rectified truss contributed by the proposed remedial measure. Three types of models i.e., ideal truss model, as build truss model and rectified truss model were fabricated and tested under monotonic loading. The structural configuration and support condition varied in all the three models to represent the ideal truss, distressed truss and the rectified truss. To verify the accuracy of the experimental results, an analytical study was carried out and the results of this analytical study are compared with the experimental ones.

A Development on Assessment Criteria for Safety Management of Small Steel Works (소규모 철강사업장의 안전관리 활동 평가항목 개발)

  • Park, Il-Seop;Gal, Won-Mo;Son, Ki-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.59-66
    • /
    • 2012
  • Steel industry in Korea is a key national industry that has led economic growth for a long time. And accidents occurred from a variety of causes has endlessly made as much as remarkable achievements of steel industry. It is a fact that research achievements of disaster prevention in steel industry has not been significantly, compared to production technique achievements. And the level of interest on safety management in the steel industry is conspicuously low. Although support activity for a various safety management are provided reasonably to prevent disasters occurring with subcontractors. A method capable of quantitative evaluation, applied to subcontractors in most business places are relatively rare except parent firms-leading places. This study is to make and show safety management activities to purcue in advance in conjunction with a parent firm through development of a more systematic and quantitative evaluation model for disaster prevention with steel industry subcontractors, and to contribute to disaster prevention in domestic steel industry through advanced safety management method, by applying a proposed evaluation model of safety management activities as subcontractors in steel industry.

Buckling Behavior of I-Beam with the Elastic Support (탄성 경계를 고려한 I형보의 좌굴 거동)

  • Kang, Young Jong;Lee, Gyu Sei;Lim, Nam Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.201-212
    • /
    • 1999
  • A beam supported by a flexible elastic support is commonly used as structural elements, e.g., braced beam, railway track, etc. The elastic support can be located in arbitrary point in the cross-section. This paper investigates the effects of support eccentricity on the elastic buckling of beams with elastic supports. The effects of stiffness of the elastic support are also studied. A beam element with elastic supports and the analysis program are developed for elastic buckling analysis using finite element formulation. The elastic support is modeled by elastic spring element. Using the offset technique, the eccentricity of support is taken into account. A beam element having 14 degrees of freedom including the warping degree of freedom is used. Various numerical example analyses show that the present formulation and analysis program accurately and effectively compute the buckling load and mode of beams with elastic supports.

  • PDF