• Title/Summary/Keyword: Steel frame

Search Result 1,463, Processing Time 0.027 seconds

Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame (내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가)

  • Kim, Seonwoong;Lee, Kyungkoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

Experimental Study on Aseismic Performance Existing School Buildings due to the Steel Reinforcement (강재 보강에 따른 기존 학교건축물의 내진성능에 관한 실험적 연구)

  • Lee, Ho;Park, Sung-Moo;Kwon, Young-Wook;Byeon, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.45-55
    • /
    • 2013
  • The core aim of this paper is to empirically scrutinize a strength characteristic and ductility of the beam-column frame of reinforced with steel subjected to the cyclic lateral load. First and foremost, I the author embarks upon making four prototypes vis-$\grave{a}$-vis this research. Through this endeavour, the author has analysed cyclic behavior, fracture shape, ductility and energy dissipation of the normal beam-column frame and a beam-column frame of reinforced with steel. In addition, the survey has revealed the exact stress transfer path and the destructive mechanism in order to how much a beam-column frame of reinforced with steel has resistance to earthquake regarding all types of building, as well as school construction. To get the correct data, the author has compared the normal beam-column frame and three types of the beam-column frame of reinforced with steel following these works, the characteristic of cyclic behavior, destructive mechanism, ductility, and Energy dissipation of normal beam-column frame and a beam-column frame of reinforced with steel have been examined clearly.

Response Characteristics Of Steel Frame Structuresw With Added Elastic Dampers (탄성 댐퍼가 추가된 대형철골 구조물의 응답특성)

  • Bae, Chun-Hee;Cho, Cheul-Whan;Yang, Kyeong-Hyeon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.593-598
    • /
    • 2002
  • Coupling adjacent steel frame using elastic dampers for control of response to low and moderate dynamic event is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristic, mainly modal damping ratio and modal frequency, of damper linked linear adjacent steel frame for fractical use. Dynamic response of steel frame linked by hydraulic-excitation method. This combined method can efectively and accurately determine dynamic response of non-clasically damped systems in the frequency domain. Parametric studties are finally performed to identify optimal parameters of elastic dampers for achieving the maximum modal damping ratio or the maximum response reduction of steel frame. It is demonstrated that using discrete elasatic dampers of proper parameters to link steel frame can reduce dynamic response significantly.

  • PDF

Experimental investigation of existing R/C frames strengthened by high dissipation steel link elements

  • Karalis, Apostolos A.;Stylianidis, Kosmas C.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.143-160
    • /
    • 2013
  • This paper presents the results of an experimental program concerning the efficiency of a specific strengthening technique which utilizes a small steel link element connected to the R/C frame through bracing elements. Brittle types of failure, especially at the connections between steel and concrete elements, can be avoided by appropriate design of the local details. Five single storey one bay R/C frames scaled 1:3 were constructed according to older codes with substandard details. The first one was a typical bare reference frame. The other four were identical to the first one, strengthened by steel bracing elements. The behavior of the strengthened frames is described with respect to the reference bare frame. The concrete frames were constructed according to older code provisions by the use of smooth steel bars, low strength concrete, sparsely spaced stirrups and substandard details. The strengthening scheme aimed to the increase of both strength and deformation capacity of the original R/C frame. The inelastic deformations are purposely concentrated to a short steel link element connecting the steel bracing to the R/C frame. The results show that the steel link element can increase considerably the strength and the energy dissipation capacity of the frame.

Structural Behavior of Reinforced Concrete Slab Rigid-frame Bridge with H-Shaped Steel Girders

  • Nakai, Yoshiaki;Ha, Tuan Minh;Fukada, Saiji
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1219-1241
    • /
    • 2018
  • This study aims towards the improvement of a reinforced concrete rigid-frame bridge in an effort to reduce the construction and maintenance costs, and achieve an improved seismic performance. Correspondingly, a new structural rigid connection is proposed for H-shaped steel girders and reinforcing bars at the corner of the rigid-frame structure. Both experiments and numerical analyses were performed. Prototype models were constructed and subjected to static loading tests to reveal their load-carrying capacity and failure mode. Numerical models were then developed using finite elements to evaluate the experimental results. Analyses elicited good agreement between simulation and experimental data and validated the numerical models. Moreover, the validity of the proposed rigid connection was confirmed, and the failure behavior was clarified. Finally, a full-size model of the reinforced concrete rigid-frame bridge with H-shaped steel girders was constructed and subjected to destructive loading tests to evaluate structural integrity of the proposed rigid connection.

Application of steel equivalent constitutive model for predicting seismic behavior of steel frame

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1055-1075
    • /
    • 2015
  • In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

Evalution of Earthquake Resistance capacity of Semi-rigid Mid/Low-rise Steel Frame using Composite Panel (복합소재패널을 이용한 반강접 중저층 강골조의 내진성능평가)

  • Chang, Chun-Ho;Lee, Taek-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1805-1813
    • /
    • 2010
  • This paper presented regarding an parametric study to investigate seismic capacity evaluation of semi-rigid steel frame infilled with composit panel. In order to propose the optimum retrofit of the steel frame, we analysed the various pattern of retrofitted steel frame subjected to weak/medium earthquake. Steel frame with composit panel was analysed by Time history analyses analysis. The model were analysed using the suites of ground motion developed by NEHRP project on steel moment resisting frame. These earthquakes consist of 20 horizontal ground acceleration record each, i.e., a 10%, 50% probability of accidence in a 50 year period. We considered the semi-rigid connection which are commonly used in field, and modeled the nonlinear connection element (GAP) between panel and frame. It was shown that how is the steel frame with composit panel effected. We also examined the response of retrofitted frame.

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

Structural Cost Optimization for Building Frame System Using High-Strength Steel Members (고강도 강재를 사용한 건물골조방식 구조물의 구조비용 최적화)

  • Choi Sang-Hyun;Kwon Bong-Keun;Kim Sang-Bum;Seo Ji-Hyun;Kwon Yun-Han;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.541-548
    • /
    • 2006
  • This study presents a structural cost optimization method for building frame system using high-strength steel members. In, this optimization method, the material cost of steel member is involved in objective function to find the optimal cost of building frame systems. Genetic Algorithm is adopted to optimizer to find structural cost optimization. The proposed adapted to structural design of 3.5 stories example buildings with buildings frame systems. As a result, The proposed optimization method can be effectively adapted to cost optimization of building frame systems using high-strength steel members.

  • PDF

Effect of pre-stressed cable on pre-stressed mega-braced steel frame

  • Tang, Baijian;Zhang, Fuxing;Wang, Yi;Wang, Fei
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.327-341
    • /
    • 2016
  • This study addresses the effect of pre-stressed cables on a pre-stressed mega-braced steel frame through employing static analysis and pushover analysis. The performances of a pre-stressed mega-braced steel frame and a pure steel frame without mega-braces are compared in terms of base shear, ductility, and failure mode. The influence of the cable parameters is also analyzed. Numerical results show that cable braces can effectively improve the lateral stiffness of a pure frame. However, it reduces structural ductility and degenerates structural pre-failure lateral stiffness greatly. Furthermore, it is found that 20% fluctuation in the cable pretension has little effect on structural ultimate bearing capacity and lateral stiffness. As comparison, 20% fluctuation in the cable diameter has much greater impact.