• Title/Summary/Keyword: Steel fiber-reinforced mortar

Search Result 44, Processing Time 0.02 seconds

Measurement of Setting Times of Steel Fiber Reinforced Mortar using Electric-mechanical Impedance Sensing Technique (전기역학적 임피던스 기법을 이용한 강섬유 보강 모르타르의 응결시간 평가)

  • Lee, Jun Choel;Kim, Wha Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.183-184
    • /
    • 2016
  • This study investigated the evolution of electro-mechanical impedance (EMI) of piezoelectricity (PZT) sensor embedded in hydrating steel fiber reinforced mortar to determine the setting times of that. Penetration resistance test was also conducted in order to justify the valid of EMI sensing technique. As a result, the setting times of steel fiber reinforced mortar can be effectively monitored through the EMI sensing technique using PZT sensor.

  • PDF

Evaluation of Impact Resistance Performance of Fiber Reinforced Preplace Grout Mortar (섬유를 혼입한 프리플레이스 모르타르의 내충격 성능 평가)

  • Lee, Sang-Gyu;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Young-Wook;Hwang, Eui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.65-66
    • /
    • 2015
  • In this study, it evaluate mecahnical performance and impact resistance performance of fiber reinforced concrete, fiber reinforced mortar and preplace grout mortar. steel fiber, nylon fiber and polypropylene fiber are reinforced 1vol.% 2vol.% 10vol.% by each fiber type. It evaluate impact resistance performance to use projectile 10mm of 400m/s velocity. As a result, mechnical performance and impact resistance performance of fiber reinforced preplace grout mortar are improved a lot by 10% fiber reinforced ratio.

  • PDF

A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique (AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구)

  • 이진경;이준현;장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.

Numerical Simulation for the Variation of the Fiber Orientation Distribution according to the Flow of High-Flow Steel-Fiber Reinforced Mortar (고유동 강섬유보강 모르타르의 유동에 따른 섬유의 방향성 분포특성 변화의 예측)

  • Kang, Su-Tae;Kim, Jin-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.639-646
    • /
    • 2009
  • High-flow steel-fiber reinforced mortar may induce a certain fiber orientation distribution in the process of placing and thus have an influence on the tensile properties. In this paper, the variation of the fiber orientation distribution according to the flow of high-flow steel-fiber reinforced mortar was estimated in numerical simulation. The analytical results present that the major variation of fiber orientation distribution is made within 150mm of flow distance, thereafter the tendency of the fiber orientation distribution is not noticeable even though the peak of distribution density in the orientation parallel to the flow direction get bigger along the distance. Considering the close relation between the fiber orientation and the tensile behavior of composite, prediction of fiber orientation distribution make it possible to predict the variation in the tensile behavior of high-flow steel-fiber reinforced mortar according to the flow.

Seismic Performance Evaluation of Reinforced Concrete Columns by Applying Steel Fiber-Reinforced Mortar at Plastic Hinge Region (소성힌지부 강섬유 혼입 모르타르 적용 철근콘크리트 기둥의 내진성능평가)

  • Cho, Chang-Geun;Han, Sung-Jin;Kwon, Min-Ho;Lim, Cheong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.241-248
    • /
    • 2012
  • This paper presents a reinforced concrete composite column method in order to improve seismic performance of reinforced concrete column specimens by selectively applying steel fiber-reinforced mortars at the column plastic hinge region. In order to evaluate seismic improvement of the newly developed column method, a series of cyclic load test of column specimens under a constant axial load was investigated by manufacturing three specimens, two reinforced concrete composite columns by applying steel fiber-reinforced mortars at the column plastic hinge region and one conventional reinforced concrete column. Both concrete and steel fiber-reinforced mortar was cast-in placed type. From cyclic load test, it was found that the newly developed steel fiber-reinforced columns showed improved seismic performances than conventional reinforced concrete column in controlling bending and shear cracks as well as improving seismic lateral load-carrying capacities and lateral deformation capacities.

Flexural Behavior of Polymer Mortar Permanent Forms Using Methyl Methacrylate Solution of Waste Expanded Polystyrene

  • Bhutta, M. Aamer Rafique;Tsuruta, Ken;Ohama, Yoshihiko
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • This experimental study examines the applicability of polymer mortar permanent forms using a methyl methacrylate (MMA) solution of waste expanded polystyrene (EPS) to develop effective recycling processes for the EPS, referring to the flexural behavior of a polymer-impregnated mortar permanent form with almost the same performance as commercial products. An MMA solution of EPS is prepared by dissolving EPS in MMA, and unreinforced and steel fiber-reinforced polymer mortars are mixed using the EPS-MMA-based solution as a liquid resin or binder. Polymer mortar permanent forms (PMPFs) using the EPS-MMA-based polymer mortars without and with steel fiber and crimped wire cloth reinforcements and steel fiber-reinforced polymer-impregnated mortar permanent form (PIMPF) are prepared on trial, and tested for flexural behavior under four-point (third-point) loading. The EPS-MMAbased PMPFs are more ductile than the PIMPF, and have a high load-bearing capacity. Consequently, they can replace PIMPF in practical applications.

Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers (강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상)

  • Heo, Gwang-Hee;Park, Jong-Gun;Seo, Dong-Ju;Koh, Sung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.48-59
    • /
    • 2021
  • In this study, experiments were conducted to investigate the compressive·flexural performances of single fiber-reinforced mortar (FRM) using only steel fiber or carbon fiber which has different material properties as well as hybrid FRM using a mixture of steel and carbon fibers. The mortar specimens incorporated steel and carbon fibers in the mix proportions of 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% and 0+1% by volume at a total volume fraction of 1.0%. Their mechanical performance was compared and examined with a plain mortar without fiber at 28 days of age. The experiments of mortar showed that the hybrid FRM using a mixture of 0.75% steel fibers + 0.25% carbon fibers had the highest compressive and flexural strength, confirming by thus the synergistic reinforcing effect of the hybrid FRM. On the contrast, in the case of hybrid FRM using a mixture of 0.5% steel fibers + 0.5% carbon fibers witnessed the highest flexural toughness, suggesting as a result the optimal fiber mixing ratio of hybrid FRM to improve the strength and flexural toughness at the same time. Moreover, the fracture surface was observed through a scanning electron microscope (SEM) for image analysis of the FRM specimen. These results were of great help for images analysis of hybrid reinforcing fibers in cement matrix.

A Study on the Shrinkage Reducing Properties of Steel Fiber Reinforced Ultra High Strength Cement Mortar (강섬유보강 초고강도 시멘트 모르터의 수축저감에 관한 연구)

  • Han Dong-Yeop;Heo Young-Sun;Pei Chang-Chun;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.67-70
    • /
    • 2005
  • Ultra high strength concrete, nowadays, has been widely applied to construction of high-rise building. To improve ductility and mechanical properties, steel fiber is employed in UHSC. This study investigates practical application of expansive additives(EA) and shrinkage reducing agent(SRA), in order to secure volumetric stability and improved mechanical properties, such as autogenous shrinkage and dry shrinkage of steel-fiber-reinforced-ultra-high-strength-comet-mortar(FHSM). According to the test, individual addition of steel fiber does not affect shrinkage reduction, as expected. However FHSM, with combined addition of 5$\%$ of EA and 1$\%$ of SRA decreased 60$\%$ of autogenous shrinkage. It is considered that Proper combination of EA and SRA can secure the shrinkage resistance of FHSM.

  • PDF

Enhancement of Compressive and Shear Strength for Concrete Masonry Prisms with Steel Fiber-Reinforced Mortar Overlay (강섬유보강 모르타르 바름에 의한 콘크리트 조적 프리즘의 압축 및 사인장 강도 증진 효과)

  • Yu, Ji-Hoon;Myeong, Seong-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.21-32
    • /
    • 2021
  • Concrete masonry prisms are strengthened with steel fiber-reinforced mortar (SFRM) overlay and tested for compressive and diagonal tension strength. Masonry prisms are produced in poor condition considering standard workmanship for masonry buildings in Korea. Amorphous steel fibers are adopted for SFRM, and appropriate mixing ratios of SFRM are derived considering constructability and strength. Masonry prisms are strengthened with different fiber volume ratios, while numerous strengthened faces and additional reinforcing meshes are produced for compression and diagonal tension tests. Compression and diagonal tension strength are increased by up to 122% and 856%, respectively, and the enhancement effect for diagonal tension strength was superior compared to compression strength. Finally, the test results and strength prediction equations based on existing literature and regression analysis are compared.

Comparative Bond Characteristics of Amorphous Steel Fiber and Conventional Steel Fiber in Cement Mortar (시멘트 모르타르 내 비정질 강섬유와 일반 강섬유의 부착특성 비교)

  • Cui, Chengkui;Kim, Youngjun;Kim, Baek-Joong;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.238-239
    • /
    • 2014
  • It is well known that the bond characteristics of fiber govern the performance of fiber reinforced composite material. A preliminary study was carried out to investigate the pull-out behavior of amorphous and conventional single fiber in cement mortar in accordance with the JCI(Japan Concrete Institute) SF-8. The test was performed under displacement control, and results showed that the bond strength decreased with increasing fiber length. In addition, the amorphous steel fiber showed much higher pull-out load per unit weight compared to conventional steel fiber.

  • PDF