• 제목/요약/키워드: Steel fabrication

검색결과 436건 처리시간 0.026초

Demonstration of Robust Micromachined Jet Technology and Its Application to Realistic Flow Control Problems

  • Chang Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.554-560
    • /
    • 2006
  • This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

Dismountable steel tensegrity grids as alternate roof structures

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Steel and Composite Structures
    • /
    • 제9권3호
    • /
    • pp.239-253
    • /
    • 2009
  • This paper reviews the concept of tensegrity structures and proposes a new type of dismountable steel tensegrity grids for possible deployment as light-weight roof structures. It covers the fabrication of the prototype structures followed by their instrumentation, destructive testing and numerical analysis. First, a single module, measuring $1m{\times}1m$ in size, is fabricated based on half-cuboctahedron configuration using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. Detailed instrumentation of the structure is carried out right at the fabrication stage. The structure is thereafter subjected to destructive test during which the strain and the displacement responses are carefully monitored. The structure is modelled and analyzed using finite element method (FEM) and the model generated is updated with the experimental results. The investigations are then extended to a $2{\times}2$ grid, measuring $2m{\times}2m$ in size, fabricated uniquely by the cohesive integration of four single tensegrity modules. After updating and validating on the $2{\times}2$ grid, the finite element model is extended to a $8{\times}8$ grid (consisting of 64 units and measuring $8m{\times}8m$) whose behaviour is studied in detail for various load combinations expected to act on the structure. The results demonstrate that the proposed tensegrity grid structures are not only dismountable but also exhibit satisfactory behaviour from strength and serviceability point of view.

3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석 (A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface)

  • 안동규;김세훈;이호진
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.

탄화규소-강 미끄럼에서의 마모특성 (A Tribological Study of SiC-Steel Couples)

  • 장복기;김윤주
    • 한국세라믹학회지
    • /
    • 제34권1호
    • /
    • pp.7-12
    • /
    • 1997
  • 건조 및 다습한 대기의 무윤활 또는 액체 윤활, 미끄럼 속도 그리고 온도 등 여러 조건 하에서 SiC-강 미끄럼 시 SiC가 나타내는 마모거동에 대하여 조사하였다. 또 SiC의 제조공정이 SiC 마모에 미치는 영향도 미끄럼 속도를 달리하면서 고찰하였다. 무윤활 미끄럼 시 대기 습도는 일종의 윤활제 역할을 하며, 특히 대기가 매우 건조한 조건 하에서 미끄럼 속도는 마모에 큰 영향을 미친다. 그리고 SiC의 제조공정 및 재료표면의 거칠기는 미끄럼 속도의 크기여하에 따라 상이한 마모거동을 초래한다. 특히 온도는 마모를 심화시키는 요인이어서 윤활 미끄럼 조건 하에서도 마모를 크게 가속한다.

  • PDF

3D BIM 기반 철골 제작도면 산출 생산성 분석 (A Study on the Productivity Analysis of 3D BIM-based Fabrication Documents Extraction)

  • 함남혁;양정혜;여옥경
    • 한국BIM학회 논문집
    • /
    • 제9권3호
    • /
    • pp.30-40
    • /
    • 2019
  • Extraction of fabrication documents is very important because it provides information related to tasks of fabrication and construction. Therefore, in the case of a prefabricated member such as a steel structure, it is necessary to improve the productivity of fabrication documents through 3D BIM. However, research and evidence data on direct comparison analysis of 3D BIM-based documents extraction versus 2D CAD-based documents extraction are hard to find. Thus, this study focuses on productivity analysis of 3D BIM based fabrication documents extraction. In this study, the productivity data of fabrication documents extraction for module construction of EPC project was analyzed. For the productivity analysis, a case study on the fabrication documents of Module A (1,965 sheets) and Module B (1,216 sheets) was conducted. Fabrication documents for each module include general arrangement drawing, assembly drawing, single part drawing and single plate drawing. Comparison of 2D CAD based fabrication documents extraction and 3D BIM based fabrication documents extraction, the productivity for the entire work was improved from 17 hours to 16 hours for Module A and 12 hours to 7 hours for Module B. Especially, the productivity of the assembly drawings, which occupies a large part of the fabrication documents, was improved by about 48.75% from the total time required from 281 hours to 144 hours.

The electrical and corrosion properties of polyphenylene sulfide/carbon composite coated stainless steel bipolar plate for PEM fuel cell

  • Lee, Yang-Bok;Kim, Kyung-Min;Park, Yu-Chun;Hwang, Eun-Ji;Lim, Dae-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • Stainless steel bipolar plates have many advantage such as high electrical conductivity and mechanical strength and low fabrication cost. However, they need a passivation layer due to low corrosion resistance under PEM fuel cell operation condition. In this study, polyphenyene sulfide(PPS)/carbon composite coated stainless steel bipolar plates were fabricated by compression molding method after PPS/carbon composite sprayed on the stainless steel plate. PPS and carbon were chosen as the binder and conductive filler of passivation layer, respectively. The interfacial contact resistance and corrosion resistance of PPS/carbon composite coated stainless steel bipolar plates were investigated and compared to the stainless steel. The PPS/carbon composite coated stainless steel compared to stainless steel was improved interfacial contact resistance. The results of the potentiodynamic and potentiostatic measurements also showed that the PPS/carbon composite coated stainless steel did not corroded under PEM fuel cell operating conditions.

  • PDF

탄소강의 가공조건과 마찰.마멸과의 관계 (Effect of Machining Condition on Friction and Wear of Steel)

  • 정종현;김대은
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1468-1476
    • /
    • 1996
  • Surface integrity is dictated by the fabrication process of the metal part. In this work, steel specimens were prepared under various mechine conditions to achieve different degrees of deformation state. The tribological characteristics of the speciments were tested using a pin-on-disk type apparatus and other surface characterization tools. It is shown that though frictional characteristics are similar, the wear rate is significantrly affected by the properties of the surface. In the case of steel, surface cracks resulted in high wear despite the relatively high hardness of the specimen. Also, the sliding action were found to reduce the residual stress on the surface. These results indicate that there is a strong relationship between surface integrity and the tribological properties of steel, and therefore the machining condition should be optimized woth respect to tribological performance of a steel part.

산업부산물을 이용한 강섬유보강 폴리에스터 수지복합체의 제조 및 역학적 특성 (Fabrication and Mechanical properties of Steel Fiber Reinforced Polyester Resin Composites Utilizing by-Products (Fly Ash))

  • 박승범;윤의식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.35-40
    • /
    • 1992
  • Results of an experimental study on the manufacture, the workability and mechanical properties of steel fiber reinforced polyester resin composites utilizing industrial waste products are presented in this paper. The fly ash polyester resin composites using steel fiber, fly ash and calcium carbonic acid (CaCo3), unsaturated polyester resin, styrene monomer, cobalt octate and methyl ethyl ketone peroxide, fine and coarse aggregates are prepared with various filler~binder rations, binder rates and mixing conditions. As a test results, the workability of steel fiber reinforced polyester resin composites are considerably dropped with increasing fly ash-binder ratio and steel fiber volume. And compressive, flexural strength and bending toughness of the composites are remarkably improved with augmenting fiber contents.

  • PDF