• Title/Summary/Keyword: Steel buckling restrained brace

Search Result 57, Processing Time 0.028 seconds

Experimental and numerical study of a proposed steel brace with a localized fuse

  • Parsa, Elham;Ghazi, Mohammad;Farahbod, Farhang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.269-283
    • /
    • 2022
  • In this paper, a particular type of all-steel HSS brace members with a locally reduced cross-sectional area was experimentally and numerically investigated. The brace member was strengthened against local buckling with inner and outer boxes in the reduced area. Four single-span braced frames were tested under cyclic lateral loadings. Specimens included a simple steel frame with a conventional box-shaped brace and three other all-steel reduced section buckling-restrained braces. After conducting the experimental program, numerical models of the proposed brace were developed and verified with experimental results. Then the length of the proposed fuse was increased and its effect on the cyclic behavior of the brace was investigated numerically. Eventually, the brace was detailed with a fuse-to-brace length of 30%, as well as the cross-sectional area of the fuse-to-brace of 30%, and the cyclic behavior of the system was studied numerically. The study showed that the proposed brace is stable up to a 2% drift ratio, and the plastic cumulative deformation requirement of AISC (2016) is easily achieved. The proposed brace has sufficient ductility and stability and is lighter, as well as easier to be fabricated, compared to the conventional mortar-filled BRB and all-steel BRB.

Evaluation of Response Modification Factor of Steel Special Resisting Frame Building Before and After Retrofitted with Buckling Restrained Brace (비좌굴가새의 보강 전과 후의 철골 특수모멘트저항골조 건물의 R계수 평가)

  • Shin, Jiuk;Lee, Kihak;Jo, Yeong Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • This research presents that seismic performance of steel moment resisting frame building designed by past provision(UBC, Uniform Building Code) before and after retrofitted with BRB (Buckling-Restrained Brace) was evaluated using response modification factor (R-factor). In addition, the seismic performance of the retrofitted past building was compared with that specified in current provision. The past building considered two different connections: bilinear connection, which was used by structural engineer for building design, and brittle connection observed in past earthquakes. The nonlinear pushover analysis and time history analysis were performed for the analytical models considered in this study. The R-factor was calculated based on the analytical results. When comparing the R-factor of the current provision with the calculated R-factor, the results were different due to the hysteresis characteristics of the connection types. After retrofitted with BRBs, the past buildings with the bilinear connection were satisfied with the seismic performance of the current provision. However, the past buildings with the brittle connection was significantly different with the R-factor of the current provision.

Prequalification of a set of buckling restrained braces: Part I - experimental tests

  • Stratan, Aurel;Zub, Ciprian Ionut;Dubina, Dan
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.547-559
    • /
    • 2020
  • Buckling restrained braces (BRBs) were developed as an enhanced alternative to conventional braces by restraining their global buckling, thus allowing development of a stable quasi-symmetric hysteretic response. A wider adoption of buckling restrained braced frames is precluded due to proprietary character of most BRBs and the code requirement for experimental qualification. To overcome these problems, BRBs with capacities corresponding to typical steel multi-storey buildings in Romania were developed and experimentally tested in view of prequalification. The first part of this paper presents the results of the experimental program which included sub-assemblage tests on ten full-scale BRBs and uniaxial tests on components materials (steel and concrete). Two different solutions of the core were investigated: milled from a plate and fabricated from a square steel profile. The strength of the buckling restraining mechanism was also investigated. The influence of gravity loading on the unsymmetrical deformations in the two plastic segments of the core was assessed, and the response of the bolted connections was evaluated. The cyclic response of BRBs was evaluated with respect to a set of performance parameters, and recommendations for design were given.

Optimized design of dual steel moment resisting system equipped with cross-anchored self-centering buckling restrained chevron brace

  • Khaneghah, Mohammadreza Ahadpour;Dehcheshmaeh, Esmaeil Mohammadi;Broujerdian, Vahid;Amiri, Gholamreza Ghodrati
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • In most self-center braces, decreasing residual deformation is possible only by increasing pretension force, which results in lower energy dissipation capacity. On the other hand, increasing energy dissipation capacity means higher values of residual deformation. The goal of this research was to find the best design for a self-centering buckling restrained brace (SC-BRB) system by balancing self-centering capability and energy dissipation. Three, six, and nine-story structures were investigated using OpenSees software and the TCL programming language to achieve this goal. For each height, 62 different SC-BRBs were considered using different values for the pretension force of cables, the area of the buckling restrained brace (BRB) core plate, and the yield stress of the core plate. The residual deformation and dissipated energy of all the models were calculated using nonlinear analyses after cyclic loading was applied. The optimum design for each height was determined among all the models and was compared to the structure equipped with the usual BRB. The residual deformation of the framed buildings was significantly reduced, according to the findings. Also the reduction of the energy dissipation was acceptable. The optimum design of SC-BRB in 6-story building has the most reduction percent in residual deformation, it can reduce residual deformation of building 83% while causing only a 57% of reduction in dissipated energy. The greatest reduction in residual deformation versus dissipated energy reduction was for the optimum SC-BRB design of 9-story building, results indicated that it can reduce residual deformation of building 69% while causing only a 42% of reduction in dissipated energy.

Seismic upgrading of structures with different retrofitting methods

  • Guneyisi, Esra Mete;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • This paper presents an analytical study aimed at evaluating the seismic performance of steel moment resisting frames (MRFs) retrofitted with different approaches. For this, 3, 6 and 12 storey MRFs having four equal bays of 5 m were selected as the case study models. The models were designed with lateral stiffness insufficient to satisfy code drift and hinge limitations in zones with high seismic hazard. Three different retrofit strategies including traditional diagonal bracing system and energy dissipation devices such as buckling restrained braces and viscoelastic dampers were used for seismic upgrading of the existing structures. In the nonlinear time history analysis, a set of ground motions representative of the design earthquake with 10% exceedance probability in fifty years was taken into consideration. Considering the local and global deformations, the results in terms of inter-storey drift index, global damage index, plastic hinge formations, base shear demand and roof drift time history were compared. It was observed that both buckling-restrained braces and viscoelastic dampers allowed for an efficient reduction in the demands of the upgraded frames as compared to traditional braces.

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

Experimental Study on Buckling Restrained Knee Bracing Systems using Channel Scetions (채널 형강을 이용한 비좌굴 Knee Bracing System의 내진성능에 대한 실험적 연구)

  • Lee, Jin;Lee, Ki Hak;Lee, Han Seon;Kim, Hee Cheul;Lee, Young Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • In this study, the seismic performance of the Buckling Restrained Knee Bracing (BRKB) system was evaluated through a pin-connected one-bay, one-story frame. The BRKB system developed in this study was composed of a steel plate as a load-resisting core member and two channel sections to restrain local and global buckling of the core plate. The main purpose of the BRKB system is to restrengthen/rehabilitate old low- and mid-rise RC buildings, which, it is assumed, were designed with non-seismic designs and details. The main variables for the test specimens were the size of the core plates and the stiffeners, and the condition of the end plates. The test results showed that the size of the core plate, which was the main element of the load-resisting member, was the most important parameter in achieving a ductile behavior under tension as well as compression until the maximum displacement exceeds twice the design drift limit.

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

Repair of seismically damaged RC bridge bent with ductile steel bracing

  • Bazaez, Ramiro;Dusicka, Peter
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.745-757
    • /
    • 2018
  • The inclusion of a ductile steel bracing as means of repairing an earthquake-damaged bridge bent is evaluated and experimentally assessed for the purposes of restoring the damaged bent's strength and stiffness and further improving the energy dissipation capacity. The study is focused on substandard reinforced concrete multi-column bridge bents constructed in the 1950 to mid-1970 in the United States. These types of bents have numerous deficiencies making them susceptible to seismic damage. Large-scale experiments were used on a two-column reinforced concrete bent to impose considerable damage of the bent through increasing amplitude cyclic deformations. The damaged bent was then repaired by installing a ductile fuse steel brace in the form of a buckling-restrained brace in a diagonal configuration between the columns and using post-tensioned rods to strengthen the cap beam. The brace was secured to the bent using steel gusset plate brackets and post-installed adhesive anchors. The repaired bent was then subjected to increasing amplitude cyclic deformations to reassess the bent performance. A subassemblage test of a nominally identical steel brace was also conducted in an effort to quantify and isolate the ductile fuse behavior. The experimental data from these large-scale experiments were analyzed in terms of the hysteretic response, observed damage, internal member loads, as well as the overall stiffness and energy dissipation characteristics. The results of this study demonstrated the effectiveness of utilizing ductile steel bracing for restoring the bent and preventing further damage to the columns and cap beams while also improving the stiffness and energy dissipation characteristics.

Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels (고강도강 비좌굴 가새의 구조성능 평가)

  • Park, Man Woo;Ju, Young Kyu;Kim, Myeong Han;Kim, Ji Young;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.355-364
    • /
    • 2008
  • The Buckling-Restrained Braces (BRB) has been developed to inhibit buckling and exhibit stable behavior under both tensile and compressive cycles. In this study, an experimental has been conducted by using the strength of its members and loading protocols as parameters to evaluate the structural performance of BRB (without in-filled concrete). Specimens are composed of an inner core and an outer tube with different steel strengths. When high-strength steels were used as inner cores, the ductility of BRB decreasedm and the requirements (Cumulative Plastic Ductility) of the AISC Seismic Provisions were not satisfied. However, when high-strength steels were used as inner cores instead of conventional strength steel cores, the maximum capacity increased significantly and displayed similar performance in total energy dissipation.