Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels

고강도강 비좌굴 가새의 구조성능 평가

  • 박만우 (동부제강(주) 건재사업부 PEB설계팀) ;
  • 주영규 (고려대학교 건축사회환경공학과) ;
  • 김명한 (대진대학교 건축공학과) ;
  • 김지영 (대우건설기술연구원) ;
  • 김상대 (고려대학교 건축사회환경공학과)
  • Received : 2007.04.05
  • Accepted : 2007.06.28
  • Published : 2008.04.10

Abstract

The Buckling-Restrained Braces (BRB) has been developed to inhibit buckling and exhibit stable behavior under both tensile and compressive cycles. In this study, an experimental has been conducted by using the strength of its members and loading protocols as parameters to evaluate the structural performance of BRB (without in-filled concrete). Specimens are composed of an inner core and an outer tube with different steel strengths. When high-strength steels were used as inner cores, the ductility of BRB decreasedm and the requirements (Cumulative Plastic Ductility) of the AISC Seismic Provisions were not satisfied. However, when high-strength steels were used as inner cores instead of conventional strength steel cores, the maximum capacity increased significantly and displayed similar performance in total energy dissipation.

비좌굴 가새는 좌굴을 방지하고 인장영역과 압축영역에서 안정적인 이력거동을 나타내기 위하여 개발되었다. 본 연구에서는 비좌굴 가새의 구조적 성능을 평가하고자 부재의 강도와 하중재하방법을 변수로 하여 실험을 수행하였다. 모든 실험체는 강종을 다르게 적용한 심재와 보강재로 구성되었다. 실험 결과에 의하면 고강도강을 심재로 적용시 연성도가 저하되어 AISC의 내진기준에서 제시하는 요구성능을 만족하지 못하였다. 그러나 고강도강을 심재로 적용시 일반강을 심재로 적용한 경우에 비해 최대내력은 상승하여 전체 에너지 소산 측면에서는 유사한 성능을 발휘하였다.

Keywords

References

  1. 권순호, 장성재, 주영규, 김명한, 정광량, 김상대(2006), 비좌굴가새의 부재성능에 관한 실험적 평가, 대한건축학회 논문집, v.22 n.4
  2. AISC/SEAOC(2001), Recommended Provisions for Buckling-Restrained Braced Frames
  3. FEMA(2003), NEHRP Recommended Provisions for New Buildings and Other Structures, FEMA 450, Washington, D.C.
  4. AISC(2005.3), Seismic Provisions for Structural Steel Buildings(draft), American Institute of Steel Construction, Chicago IL.
  5. AISC(2005.11), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago IL.
  6. Wakabayashi, M., Nakamura, T., Kashibara, A., Morizono, T. and Yokoyama, H.(1973), Experimental study of elastro-plastic properties of precast concrete wall panels with built-in insulating braces, Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, pp.1041-1044
  7. Sridhara, B. N.(1990), Sleeved column-as a basic compression member, Proc. 4th International Conference on Steel Structures & Space Frames, Singapore, pp. 181-188
  8. Tsai, K.C., Lai, J.W.(2002), A Study of buckling restrained seismic braced frame, Structural Engineering, 17(2) 3-32
  9. Black, C., Makris, N. and Aiken, I.(2002), Component testing, stability analysis and characterization of buckling-restrained braces, Pacific Earthquake Engineering Research Center, University of California, Berkeley CA, Report No. PEER-2002/08
  10. Merritt, S., Uang, C. M. and Benzoni G.(2003), Subassemblage testing of corebrace buckling- restrained braces, Department of Structural Engineering, University of California, San Diego, Report No. TR-2003/01
  11. Sabelli, R., Mahin, S. and Chang, C.(2003), Seismic Demands on Steel Braced Frame Buildings with Buckling-Restrained Braces, Engineering Structures, pp. 655-666
  12. Fahnestock, L. A., Sause, R., Ricles, J. M. and Lu, L.W.(2003), Ductility Demands on Buckling-Restrained Braced Frames under Earthquake Loading, Earthquake Engineering and Engineering Vibration, Vol.2. No.2