• Title/Summary/Keyword: Steel box girder bridge

Search Result 231, Processing Time 0.026 seconds

Wind-induced vibrations and suppression measures of the Hong Kong-Zhuhai-Macao Bridge

  • Ma, Cunming;Li, Zhiguo;Meng, Fanchao;Liao, Haili;Wang, Junxin
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.179-191
    • /
    • 2021
  • A series of wind tunnel tests, including 1:50 sectional model tests, 1:50 free-standing bridge tower tests and 1:70 full-bridge aeroelastic model tests were carried out to systematically investigate the aerodynamic performance of the Hong Kong-Zhuhai-Macao Bridge (HZMB). The test result indicates that there are three wind-resistant safety issues the HZMB encounters, including unacceptable low flutter critical wind speed, vertical vortex-induced vibration (VIV) of the main girder and galloping of the bridge tower in across-wind direction. Wind-induced vibration of HZMB can be effectively suppressed by the application of aerodynamic and mechanical measures. Acceptable flutter critical wind speed is achieved by optimizing the main girder form (before: large cantilever steel box girder, after: streamlined steel box girder) and cable type (before: central cable, after: double cable); The installations of wind fairing, guide plates and increasing structural damping are proved to be useful in suppressing the VIV of the HZMB; The galloping can be effectively suppressed by optimizing the interior angle on the windward side of the bridge tower. The present works provide scientific basis and guidance for wind resistance design of the HZMB.

Numerical study of steel box girder bridge diaphragms

  • Maleki, Shervin;Mohammadinia, Pantea;Dolati, Abouzar
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.681-699
    • /
    • 2016
  • Steel box girders have two webs and two flanges on top that are usually connected with shear connectors to the concrete deck and are also known as tub girders. The end diaphragms of such bridges comprise of a stiffened steel plate welded to the inside of the girder at each end. The diaphragms play a major role in transferring vertical and lateral loads to the bearings and substructure. A review of literature shows that the cyclic behavior of diaphragms under earthquake loading has not been studied previously. This paper uses a nonlinear finite element model to study the behavior of the end diaphragms under gravity and seismic loads. Different bearing device and stiffener configurations have been considered. Affected areas of the diaphragm are distinguished.

Reinforcement design of the top and bottom slabs of composite box girder with corrugated steel webs

  • Zhao, Hu;Gou, Hongye;Ni, Ying-Sheng;Xu, Dong
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.537-550
    • /
    • 2019
  • Korea and Japan have done a lot of research on composite girders with corrugated steel webs and built many bridges with corrugated steel webs due to the significant advantages of this type of bridges. Considering the demanding on the calculation method of such types of bridges and lack of relevant reinforcement design method, this paper proposes the spatial grid analysis theory and tensile stress region method. First, the accuracy and applicability of spatial grid model in analyzing composite girders with corrugated steel webs was validated by the comparison with models using shell and solid elements. Then, in a real engineering practice, the reinforcement designs from tensile stress region method based on spatial grid model, design empirical method and specification method are compared. The results show that the tensile stress region reinforcement design method can realize the inplane and out-of-plane reinforcement design in the top and bottom slabs in bridges with corrugated steel webs. The economy and precision of reinforcement design using the tensile stress region method is emphasized. Therefore, the tensile stress region reinforcement design method based on the spatial grid model can provide a new direction for the refined design of composite box girder with corrugated steel webs.

Behavior of Jointless Bridge of Steel Box Girder Type Due to Temperature Change (온도변화에 따른 무신축이음 강상자형 교량의 거동 분석)

  • 조남훈;이성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.95-102
    • /
    • 1997
  • Jointless bridge is a new construction method applicable to bridge of short length. In the jointless bridge expansion of superstructure due to thermal effect was absorbed in the flexible pile-type abutment in stead of expansion joint in the conventional bridges. By removing expansion joint, it retards deterioration and extends life time of bridge. In this paper, jointless bridge of steel box girder type was studied through finite element analysis. Stress variations of superstructure and pile due to thermal effect was studied for the two span continuous integral bridge of 80m length and the results of analysis was presented.

  • PDF

A analysis on dyanmic movements of Bridge status using High Rail monitoring systems (상시 계측결과를 이용한 경부고속철도 교량의 동적거동 분석)

  • Chung Jae-Min;Han Sang-Chul;Choi Il-Yoon;Lee Jun-Seok;Seo Hyeong-Lyel
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.934-939
    • /
    • 2004
  • The Korea high-speed rail, based on the French design. It also implements new concept to increase the strength of bridge deck by adding an impact factor (dynamic intensity factor) in static load. In order to assure the dynamic stability, SYSTRA and Jeseph Penzien, a professor in CEC (the US) conducted a dynamic stability review on design phase. Analyzing the review results, they developed design criteria for dynamic behavior. This study deal with operating PSC box GIRDER equipped with measurement equipment or measured data of Seoul $\∼$ Taejeon, P.S.C BOX GIRDER bridge and steel comsition bridge equipped with measurement equipment based on structual knowledge about configuration of measuring sensor, response analysis of structure when train runs was performed by using measured data of PSC box girder to directly compare with design criteria. moreover, the dynamic stability with comparison of high-speed rail construction criteria was reviewed and analyzed based on historical records.

  • PDF

Dynamic Behavior of Simple Span PSC-BOX Girder Bridge under the Passage of the Urban Maglev Transit (도시형자기부상열차 주행하중에 의한 단경간 PSC-Box 거더교의 동적 거동)

  • Yang, Tae-Sock;Chung, Won-Yong;Lee, Gi-Yeol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.864-869
    • /
    • 2008
  • Magnetic Levitated(Maglev) Vehicle, which utilizes electromagnetic forces between dual-pole electromagnets and a steel rail, generally runs on guideway structures. A prototype of an Urban Maglev Vehicle has been developed and tested in Korea, This study was conducted as a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program, statred in 2006. As the Maglev load is distributed rather than concentrated, a field test was conducted on Simple Span PSC-BOX Girder Bridge(L=25.0m) of the Expo-Maglev test track in Daejeon to examine the dynamic effect of the Maglev load on the bridge. Numerical analyses were also performed up to the maximum passing speed of 110 km/h by 10 km/h increments of Maglev Vehicle using Finite Element model of bridge, and girder deflections, accelerations and Dynamic Amplification Factor (DAF) are analysed.

  • PDF

Dynamic Characteristics of High-speed Railway Steel Bridges (고속철도 강교량의 진동특성 분석)

  • Lee, Jung-Whee;Kim, Sung-Il;Kwark, Jong-Won;Lee, Pil-Goo;Yoon, Tae-Yang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.632-637
    • /
    • 2007
  • The dynamic behavior of two steel bridges crossed by the Korean High Speed Train(KHST) has been investigated experimentally and the results are compared with the specification requirement of BRDM and other typical PSC Box bridge's responses. The investigated bridges are a 2-girder steel bridge of 1@40m span length(E-Won Bridge), 2@50m span length (Ji-Tan Bridge), and a PSC Box girder bridge of 2@40m span length (Yeon-Jae Bridge). A set of experimental tests were performed during operation of KHST, and a number of accelerometers, LVDTs and ring-type displacement transducers were utilized for measurement of three kinds of dynamic responses (acceleration, deflection, and end-rotation angle). Measured responses show that the vertical deflections and end-rotation angles of the three bridges are all satisfying the spec. requirement with large margin, but it was also found acceleration responses which are very close or exceed the limit value. Most of the excessive acceleration responses were found when the passing velocity of the KHST is close to the critical velocity ($V_{cr}$) which causes resonance. No noticeable differences of dynamic responses due to the different materials(steel or concrete) could be found within these experimental results.

A new type of steel-concrete composite bridge: S.B girder (신형식 강-콘크리트 합성교량: S.B 합성거더)

  • Sim, Jun-Gi;Zi, Goang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.41-42
    • /
    • 2010
  • Newly developed steel-concrete composite girder bridge that comprise a steel girder with a steel box top slab filled with concrete. Compressive strength and bucking resistance of that are high because the concrete was confined to steel. that is economical form because the top of the section substituted partly steel for concrete. This paper provides that conspicuous characteristics of a new type of steel-concrete composite bridge.

  • PDF

A Study for Stiffness Improvement Method with Use of Filled Concrete in Continued Steel Box Girder Bridge (강상자형 연속교에서 콘크리트재를 이용한 부모멘트 구간의 강성향상공법)

  • 구민세;이호경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.69-78
    • /
    • 1999
  • The stiffness of slab concrete section is not considered as effective in the existing method of construction for continued steel box girder bridge. Using lifting system and filled concrete, it is possible to make stiffness of slab concrete section effective and improve stiffness of negative moment section. It was proved that the stress of upper flange in positive moment is significantly lower than case of existing method through the stress comparison. This stress difference made possible to rearrange flange thickness and as the result of this rearrangement, the amount of steel and height of girder can be reduced up to 13.23% and 11.5%.

  • PDF