• 제목/요약/키워드: Steel beam assembly

검색결과 44건 처리시간 0.024초

전기철도 전차선로 지지물 강관주와 강관빔의 연결부 검토 (Consideration on joint steel poles and beams for cartenary lines)

  • 송중호;조근철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1334-1340
    • /
    • 2004
  • 종래의 앵글 조립재와 철주빔의 연결방법을 검토하고 강관주와 강관빔의 연결시 종래의 앵글보다 우수한 점들을 열거하며 연결부분의 모멘트 등을 검토하여 경제적인면 등의 우수성을 보여줘 장래에는 조립빔보다 강관빔으로 교체하는 것이 철도의 경제적인 면이나 유지보수적인 측면에서 유리함을 보여준다. 종래의 수계산에 의존하거나 외주에 의거하여 계산되어졌으나 마이다스아이티사의 CIVIL프로그램을 응용하여 계산한다면 충분히 자체적으로도 강도계산이 이루어질 수 있다. 전단력과 허용인장응력, 허용휨압축응력, 허용전단응력등을 검토하고 이에따라 합성응력을 검토하여 강관주의 안전성을 보여준다. 또한 연결부의 사용볼트 및 볼트 허용인장강도, 전단강도, 축력, 전단력, 모멘트등도 검토하고 나아가 전철주 기초의 base plate 연결부위도 검토한다.

  • PDF

철근 콘크리트 기둥과 철골보의 합성구조 접합부 성능에 관한 연구 (Structural Behavior of Reinforced Concrete column and Steel beam Joints)

  • 이원규;신동대;송진규;정혜교;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.575-578
    • /
    • 1999
  • The main objective of this study was to examine structural behavior of reinforced concrete column and steel beam joint. composite specimens about 3/4 of the actual beam column connection assembly were tested by applying cyclic load through actuators. Test variables include face bearing plate(FBP), extended face bearing plate(E-FBP), VIR, U-bar and sub beam. There is not much differenced between specimens with sub beam and without sub beam. Test results also show that the joint strength of test specimen is close to the predicted strength by ASCE guideline.

  • PDF

A NOVEL APPROACH OF BUILDING CONSTRUCTION USING ROBOTIC TECHNOLOGY

  • Baeksuk Chu;Kyungmo Jung;Hunhee Cho;Myo-Taeg Lim;Daehie Hong
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.31-37
    • /
    • 2011
  • Construction automation is yet to be improved since construction site still faces a lot of high risks and difficulties. This research focuses on applying robotic beam assembly system in place of construction workers. This system consists of CF (Construction Factory) structure to provide adequate working environment to robot automation. The CF structure not only gives automation environment for a robot but also houses the equipments to protect from outside effects. The robotic beam assembly system also consists of robotic bolting system and robot transport mechanism. It utilizes various tools to insert and join the bolts and nuts. Visual servoing helps precise robot motion by sensing bolt hole and tail of the bolt. ITA system helps non skilled workers to easily perform the assembly work with the robot system. The robot transport mechanism includes sliding rail and cross-wired lift. It carries the robot to a desired position for assembly work.

  • PDF

GFRP 도어 임팩트 빔과 Steel 브래킷의 기계적 결합에 관한 실험적 연구 (An Experimental Study on the Mechanical Mounting between GFRP Door Impact Beam and Steel Brackets)

  • 하중찬;신영철;백인석;이석순
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.103-110
    • /
    • 2021
  • The mounting performance of the GFRP(Glass fiber Reinforced Plastic) beam and the mechanical mounting of the steel bracket was studied to be mounted as a GFRP impact beam on the side door of the passenger car. Moreover, an open-hole tensile test was performed to evaluate breakage tendency based on GFRP stacking conditions. Furthermore, the tightening strength of rivets and bolts was compared using the single lap-shear tension test for the GFRP stacking pattern. Additionally, the GFRP beam and bracket mounting features were designed; moreover, the prototype and bracket were assembled. Additionally, the bracket mounting bending test and the door assembly static bending test were performed to verify the stability of the bracket mounting. In the bracket fastening bending test, no breakage occurred in the connection part between the GFRP beam and the bracket, and it showed 67% (24.4 kN) improved performance compared to steel. In the static bending test of the door assembly, the initial average reaction force increased by 25% compared to the steel, and the performance of all FMVSS-214 regulations was satisfied. The replacement of GFRP impact beams resulted in a 30% weight reduction

Cockpit Module용 Hybrid Structure개발에 관한 연구 (A Study on a Development of Hybrid(Magnesium & Steel) Structure for Application of Cockpit Module)

  • 박병구;이정환;김영삼;한성수
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.166-170
    • /
    • 2002
  • A hybrid structure composed of magnesium and steel is Instrument Panel structure used for the basement of cockpit module components. For that reason, A hybrid structure has to be designed for satisfying components assembly design facility and styling. There are various models of If like steel structure assembly, however having been applied normally, but magnesium structure assembly selected far saving weight down. This paper introduces a hybrid structure having advantages between steel and magnesium structure and presents a CAE technical solution based on a development project. furthermore, it provides desired direction of the future development is suggested.

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.

철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구 (An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly)

  • 이정윤;김진영;오기종
    • 콘크리트학회논문집
    • /
    • 제19권4호
    • /
    • pp.441-448
    • /
    • 2007
  • 지진하중을 받는 철근콘크리트 접합부의 거동은 전단과 부착 메커니즘에 의해 결정된다. 하지만 전단과 부착은 반복하중에 매우 취약하기 때문에 접합부는 항상 탄성 영역 내에 있어야 한다. 내진 설계 기준에서는 보에 소성힌지를 발생시켜 기둥과 접합부는 탄성 상태를 유지하면서 보에서 에너지소산이 이루어지도록 하는 것을 원칙으로 한다. 하지만 접합부와 인접한 보에 소성힌지가 발생할 경우, 보에서 발생한 소성힌지에서의 철근 변형률이 접합부 철근의 변형에 영향을 미쳐 결국 접합부의 전단 및 부착강도를 떨어뜨리는 결과를 가져오게 된다. 본 논문에서는 보 인장 철근량을 변수로 한 다섯 개의 철근콘크리트 보-기둥 접합부를 제작하고 보에 소성힌지를 발생시킨 후 그 결과를 분석하였다. 실험 결과, 보 인장철근량이 적을수록 접합부의 연성은 증가하였다. 또한 소성힌지 영역의 철근이 항복함에 따라 접합부의 연성률이 증가하고 접합부의 보 부재축 방향 인장변형률도 증가하였다.

Verification and application of beam-particle model for simulating progressive failure in particulate composites

  • Xing, Jibo;Yu, Liangqun;Jiang, Jianjing
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.273-283
    • /
    • 1999
  • Two physical experiments are performed to verify the effectiveness of beam-particle model for simulating the progressive failure of particulate composites such as sandstone and concrete. In the numerical model, the material is schematized at the meso-level as an assembly of discrete, interacting particles which are linked through a network of brittle breaking beams. The uniaxial compressive tests of cubic and parallelepipedal specimens made of carbon steel rod assembly which are glued together by a mixture are represented. The crack patterns and load-displacement response observed in the experiments are in good agreement with the numerical results. In the application respect of beam-particle model to the particulate composites, the influence of defects, particle arrangement and boundary conditions on crack propagation is approached, and the correlation existing between the cracking evolution and the level of loads imposed on the specimen is characterized by fractal dimensions.

Finite element study on composite slab-beam systems under various fire exposures

  • Cirpici, Burak K.;Orhan, Suleyman N.;Kotan, Turkay
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.589-603
    • /
    • 2020
  • This paper presents an investigation of the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects from floor. A detailed finite-element model has been developed by representing the concrete slab with steel decking under of it and steel beam both steel parts protected by intumescent coating. Although this type of floor systems offers a better fire resistance, passive fire protection materials should be applied when a higher fire resistance is desired. Moreover, fire exposed side is so crucial for composite slab systems as the total fire behaviour of the floor system changes dramatically. When the fire attack from steel parts, the temperature rises rapidly resulting in a sudden decrease on the strength of the beam and decking. Herein this paper, the fire attack side is assumed from the face of the concrete floor (top of the concrete assembly). Therefore, the heat is transferred through concrete to the steel decking and reaching finally to the steel beam both protected by intumescent coating. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity, specific heat and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating. Results show that the protected composite floors offer a higher fire resistance as the temperature of the steel section remains below 60℃ even after 60-minute Standard (ISO) fire and Fast fire exposure. Obtaining lower temperatures in steel due to the great fire performance of the concrete itself results in lesser reductions of strength and stiffness hence, lesser deflections.

Static behavior of bolt connected steel-concrete composite beam without post-cast zone

  • Xing, Ying;Zhao, Yun;Guo, Qi;Jiao, Jin-feng;Chen, Qing-wei;Fu, Ben-zhao
    • Steel and Composite Structures
    • /
    • 제38권4호
    • /
    • pp.365-380
    • /
    • 2021
  • Although traditional steel-concrete composite beams have excellent structural characteristics, it cannot meet the requirement of quick assembly and repair in the engineering. This paper presents a study on static behavior of bolt connected steel-concrete composite beam without post-cast zone. A three-dimensional finite element model was developed with its accuracy and reliability validated by available experimental results. The analysis results show that in the normal service stage, the bolt is basically in the state of unidirectional stress with the loss of pretightening can be ignored. Parametric studies are presented to quantify the effects of the post-cast zone, size and position of splicing gap on the behavior of the beam. Based on the studies, suggested size of gap and installation order were proposed. It is also confirmed that optimized concrete slab in mid-span can reduce the requirement of construction accuracy.