• 제목/요약/키워드: Steel beam

검색결과 3,043건 처리시간 0.027초

Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: an experimental study

  • Le, Van Phuoc Nhan;Bui, Duc Vinh;Chu, Thi Hai Vinh;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1001-1019
    • /
    • 2016
  • The connector is the most important part of a composite beam and promotes a composite action between a steel beam and concrete slab. This paper presents the experiment results for three large-scale beams with a newly puzzle shape of crestbond. The behavior of this connector in a composite beam was investigated, and the results were correlated with those obtained from push-out-test specimens. Four-point-bending load testing was carried out on steel-concrete composite beam models to consider the effects of the concrete strength, number of transverse rebars in the crestbond, and width of the concrete slab. Then, the deflection, ultimate load, and strains of the concrete, steel beam, and crestbond; the relative slip between the steel beam and the concrete slab at the end of the beams; and the failure mechanism were observed. The results showed that the general behavior of a steel-concrete composite beam using the newly puzzle shape of crestbond shear connectors was similar to that of a steel-concrete composite beam using conventional shear connectors. These newly puzzle shape of crestbond shear connectors can be used as shear connectors, and should be considered for application in composite bridges, which have a large number of steel beams.

An innovative experimental method to upgrade performance of external weak RC joints using fused steel prop plus sheets

  • Kheyroddin, Ali;Khalili, Ali;Emami, Ebrahim;Sharbatdar, Mohammad K.
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.443-460
    • /
    • 2016
  • In this paper, the efficiency and effectiveness of two strengthening methods for upgrading behavior of the two external weak reinforced concrete (RC) beam-column joints were experimentally investigated under cyclic loading. Since two deficient external RC joints with reduced beam height and low strength concrete were strengthened using one-way steel prop and curbs with and without steel revival sheets on the beam. The cyclic performance of these strengthened specimens were compared with two another control external RC beam-column joints, one the standard RC joint that had not two mentioned deficiencies and another had both. Therefore, four half-scale RC joints were tested under cyclic loading.The experimental results showed that these innovative strengthening methods (RC joint with revival sheet specially) surmounted the deficiencies of weak RC joints and upgraded their performance and bearing capacity, stiffness degradation, energy absorption, up to those of standard RC joint. Also, results exhibited that the prop at joint acted as a fuse element due to adding steel revival sheets on the RC beam and showed better behavior than that of the specimen without steel revival sheets. In other words by stiffening of beam, the prop collected all damages due to cyclic loading at itself and acted as the first line of defense and prevented from sever damages at RC joint.

Load Transfer Mechanism of a Hybrid Beam-Column Connection System with Structural Tees

  • Kim, Sang-Sik;Choi, Kwang-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.199-205
    • /
    • 2006
  • The composite frame system with reinforced concrete column and steel beam can be improved in its structural efficiency by complementing the shortcomings of the two systems. The system, however, has many inherent problems in practical design and construction process due to the dissimilarities of the materials. Considering these circumstance, this research aims for the development of a composite structural system which connects the steel beams to the R/C columns with higher structural safety and economy. Basically, the proposed connection system is composed of four split tees, structural angles reinforced by a stiffener, high strength steel rods, connecting plates and shear plates. Structural tests have been carried out to investigate the moment transfer mechanism 1Tom the beam flange to steel rods or connecting plates through the structural angle reinforced by a stiffener. The four prototype specimens have been tested until the flange of the beam reached a plastic state. The test results indicated that no distinct material dissimilarities between concrete and steel have been detected for the proposed hybrid beam-column connection system and that the stress transfer through the structural angle between the beam flange and steel rods or connecting plates was very encouraging.

Strengthening of T-beams using external steel clamps and anchored steel plates

  • Yunus Dere;Yasin Onuralp Ozkilic;Ali Serdar Ecemis;Hasan Husnu Korkmaz
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.405-417
    • /
    • 2023
  • In order to strengthen the reinforced concrete T-beams having insufficient shear strength, several strengthening techniques are available in the literature. In this study, three different strengthening strategies were numerically studied. First one is affixing steel plates to the beam surfaces. Second one includes tightening external steel bars vertically similar to beam stirrups. The last one is simultaneous application of these two strengthening procedures which is particularly proposed in this work. Available experimental test series in the literature were handled in the study. Finite element (FE) models of reinforced concrete beam specimens having sufficient (Beam-1) and low shear capacity (Beam-2) were created within ABAQUS environment. Strengthened beams with different techniques were also modelled to reflect improved shear capacity. FE simulations made it possible to investigate parameters that were not examined during the previous experimental studies. The results of the analyses were then compared and found consistent with the experimentally obtained data. Experimental and FEM analysis results are in agreement between 1% (closest) and 6%. (maximum). Beam-2 was stregthened with 5 new porposed methods. The rate of increase in shear strength varies between 33% and 64%. It was found that, the strengthening techniques were fairly useful in improving the shear capacity of the considered girder. The model with the proposed strengthening alternative has accomplished a higher load carrying capacity, ductility and stiffness than all of the other models.

Investigation on the flexural behavior of an innovative U-shaped steel-concrete composite beam

  • Turetta, Maxime;Odenbreit, Christoph;Khelil, Abdelouahab;Martin, Pierre-Olivier
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.441-452
    • /
    • 2020
  • Within the French CIFRE research project COMINO, an innovative type of composite beam was developed for buildings that need fire resistance with no additional supports in construction stage. The developed solution is composed of a steel U-shaped beam acting as a formwork in construction stage for a reinforced concrete part that provides the fire resistance. In the exploitation stage, the steel and the reinforced concrete are acting together as a composite beam. This paper presents the investigation made on the load bearing capacity of this new developed steel-concrete composite section. A full-scale test has been carried out at the Laboratory of Structural Engineering of the University of Luxembourg. The paper presents the configuration of the specimen, the fabrication process and the obtained test results. The beam behaved compositely and exhibited high ductility and bending resistance. The shear connection in the tension zone was effective. The beam failed by a separation between the slab and the beam at high deformations, excessive shear forces conducted to a failure of the stirrups in this zone. The test results are then compared with good agreement to analytical methods of design based on EN 1994 and design guidelines are given.

강재 보강에 따른 기존 학교건축물의 내진성능에 관한 실험적 연구 (Experimental Study on Aseismic Performance Existing School Buildings due to the Steel Reinforcement)

  • 이호;박성무;권영욱;변상민
    • 한국공간구조학회논문집
    • /
    • 제13권3호
    • /
    • pp.45-55
    • /
    • 2013
  • The core aim of this paper is to empirically scrutinize a strength characteristic and ductility of the beam-column frame of reinforced with steel subjected to the cyclic lateral load. First and foremost, I the author embarks upon making four prototypes vis-$\grave{a}$-vis this research. Through this endeavour, the author has analysed cyclic behavior, fracture shape, ductility and energy dissipation of the normal beam-column frame and a beam-column frame of reinforced with steel. In addition, the survey has revealed the exact stress transfer path and the destructive mechanism in order to how much a beam-column frame of reinforced with steel has resistance to earthquake regarding all types of building, as well as school construction. To get the correct data, the author has compared the normal beam-column frame and three types of the beam-column frame of reinforced with steel following these works, the characteristic of cyclic behavior, destructive mechanism, ductility, and Energy dissipation of normal beam-column frame and a beam-column frame of reinforced with steel have been examined clearly.

Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength

  • Safa, M.;Shariati, M.;Ibrahim, Z.;Toghroli, A.;Baharom, Shahrizan Bin;Nor, Norazman M.;Petkovic, Dalibor
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.679-688
    • /
    • 2016
  • Structural design of a composite beam is influenced by two main factors, strength and ductility. For the design to be effective for a composite beam, say an RC slab and a steel I beam, the shear strength of the composite beam and ductility have to carefully estimate with the help of displacements between the two members. In this investigation the shear strengths of steel-concrete composite beams was analyzed based on the respective variable parameters. The methodology used by ANFIS (Adaptive Neuro Fuzzy Inference System) has been adopted for this purpose. The detection of the predominant factors affecting the shear strength steel-concrete composite beam was achieved by use of ANFIS process for variable selection. The results show that concrete compression strength has the highest influence on the shear strength capacity of composite beam.

Experiment research on seismic performance of prestressed steel reinforced high performance concrete beams

  • Xue, Weichen;Yang, Feng;Li, Liang
    • Steel and Composite Structures
    • /
    • 제9권2호
    • /
    • pp.159-172
    • /
    • 2009
  • Two prestressed steel reinforced high performance concrete (SRC) beams, a nonprestressed SRC beam and a counterpart prestressed concrete beam were tested under low reversed cyclic loading to evaluate seismic performance of prestressed SRC beams. The failure modes, deformation restoring capacity, ductility and energy dissipation capacity of the prestressed SRC beams were discussed. Results showed that due to the effect of plastic deformations of steel beams encased in concrete, the three SRC beams exhibited residual deformation ratios ranging between 0.64 and 0.79, which were apparently higher than that of the prestressed concrete beam (0.33). The ductility coefficients of the prestressed SRC beams and the prestressed concrete beam ranged between 4.65 and 4.87, obviously lower than that of nonprestressed SRC beam (9.09), which indicated the steel beams influenced the ductility little while prestressing resulted in an apparent reduction in ductility. The amount of energy dissipated by the prestressed SRC beams was less than that dissipated by the nonprestressed SRC beam but much more than that dissipated by the prestressed concrete beam.

SFRHPC interior beam-column-slab joints under reverse cyclic loading

  • Ganesan, N.;Nidhi, M.;Indira, P.V.
    • Advances in concrete construction
    • /
    • 제3권3호
    • /
    • pp.237-250
    • /
    • 2015
  • Beam-column joints are highly vulnerable locations which are to be designed for high ductility in order to take care of unexpected lateral forces such as wind and earthquake. Previous investigations reveal that the addition of steel fibres to concrete improves its ductility significantly. Also, due to presence of slab the strength and ductility of the beam increases considerably and ignoring the effect of slab can lead to underestimation of beam capacity and defiance of strong column weak beam concept. The influence of addition of steel fibres on the strength and behaviour of steel fibre reinforced high performance concrete (SFRHPC) interior beam-column-slab joints was investigated experimentally. The specimens were subjected to reverse cyclic loading. The variable considered was the volume fraction of crimped steel fibres i.e., 0%, 0.5% and 1.0%. The results show that the addition of steel fibres improves the first crack load, strength, ductility, energy absorption capacity and initial stiffness of the beam.

Analysis of RC beam with unbonded or exposed tensile steel reinforcements and defective stirrup anchorages for shear strength

  • Wang, Xiao-Hui;Liu, Xi-La
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.59-78
    • /
    • 2012
  • Although the effect of corrosion of reinforcing bar on the shear behavior of the reinforced concrete (RC) beam had been simulated by tests of the beam with unbonded, half-exposed or whole-exposed tensile steel reinforcements as well as defective stirrup anchorages, theoretical methods to accurately predict remaining capacity of this kind of RC beams, especially shear capacity, are still lacking. Considering the possible position of the critical inclined crack, the actual pattern of strains in the concrete body within the partial length and the proposed compatibility condition of deformations of the RC beam, shear strength of the RC beam with unbonded or exposed tensile steel reinforcements and/or defective stirrup anchorages is predicted. Comparison between the model's predictions with the experimental results published in the literature shows the practicability of the proposed model. Influence of the length of unbonded or exposed tensile steel reinforcements and the percentage of stirrups lacked end anchorages on the shear strength of the RC beam is discussed. It is concluded that, the shear strength of the RC beam with unbonded or exposed tensile steel reinforcements and/or defective stirrup anchorages is greatly influenced by the length of unbonded or exposed tensile steel reinforcements and the percentage of stirrups lacked end anchorages, this influence can be adverse, insignificant or even favourable, dependent on the given parameters of the corresponding normal bonded RC beam.