DOI QR코드

DOI QR Code

Strengthening of T-beams using external steel clamps and anchored steel plates

  • Received : 2023.04.17
  • Accepted : 2023.08.02
  • Published : 2023.08.25

Abstract

In order to strengthen the reinforced concrete T-beams having insufficient shear strength, several strengthening techniques are available in the literature. In this study, three different strengthening strategies were numerically studied. First one is affixing steel plates to the beam surfaces. Second one includes tightening external steel bars vertically similar to beam stirrups. The last one is simultaneous application of these two strengthening procedures which is particularly proposed in this work. Available experimental test series in the literature were handled in the study. Finite element (FE) models of reinforced concrete beam specimens having sufficient (Beam-1) and low shear capacity (Beam-2) were created within ABAQUS environment. Strengthened beams with different techniques were also modelled to reflect improved shear capacity. FE simulations made it possible to investigate parameters that were not examined during the previous experimental studies. The results of the analyses were then compared and found consistent with the experimentally obtained data. Experimental and FEM analysis results are in agreement between 1% (closest) and 6%. (maximum). Beam-2 was stregthened with 5 new porposed methods. The rate of increase in shear strength varies between 33% and 64%. It was found that, the strengthening techniques were fairly useful in improving the shear capacity of the considered girder. The model with the proposed strengthening alternative has accomplished a higher load carrying capacity, ductility and stiffness than all of the other models.

Keywords

References

  1. Abd, S.M., Mhaimeed, I.S., Tayeh, B.A., Najm, H.M. and Qaidi, S. (2023), "Investigation of the use of textile carbon yarns as sustainable shear reinforcement in concrete beams", Case Studies Construct. Mater., 18, e01765.
  2. Abd, S.M., Mhaimeed, I.S., Tayeh, B.A., Najm, H.M. and Qaidi, S. (2022), "Flamingo technique as an innovative method to improve the shear capacity of reinforced concrete beam", Case Studies Construct. Mater., 17, e01618.
  3. Abdul-Razzaq, K.S. and Abdul-Kareem, M.M. (2018), "Innovative use of steel plates to strengthen flange openings in reinforced concrete T-beams", Structures, 16, 269-287. https://doi.org/10.1016/j.istruc.2018.10.005.
  4. Adhikary, B.B. and Mutsuyoshi, H. (2006), "Shear strengthening of reinforced concrete beams using various techniques", Construct. Build. Mater., 20(6), 366-373. https://doi.org/10.1016/j.conbuildmat.2005.01.024.
  5. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H. (2022), "Mechanical Steel Stitches: An innovative approach for strengthening shear deficiency in undamaged reinforced concrete beams", Buildings, 12(10), 1501. https://doi.org/10.3390/buildings12101501.
  6. Aksoylu, C., Ozkilic, Y.O., Madenci, E. and Safonov, A. (2022), "Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite wrappings", Polymers, 14(19), 4095. https://doi.org/10.3390/polym14194095.
  7. Al-Tayeb, M.M., Aisheh, Y.I.A., Qaidi, S.M. and Tayeh, B.A. (2022), "Experimental and simulation study on the impact resistance of concrete to replace high amounts of fine aggregate with plastic waste", Case Studies Construct. Mater., 17, e01324.
  8. Alajarmeh, O., Zeng, X., Aravinthan, T., Shelley, T., Alhawamdeh, M., Mohammed, A. and Schubel, P. (2021), "Compressive behaviour of hollow box pultruded FRP columns with continuous-wound fibres", Thin-Wall. Struct., 168, 108300. https://doi.org/10.1016/j.tws.2021.108300.
  9. Almeshal, I., Al-Tayeb, M.M., Qaidi, S.M., Bakar, B.A. and Tayeh, B.A. (2022), "Mechanical properties of eco-friendly cements-based glass powder in aggressive medium", Mater. Today: Proceedings, 58, 1582-1587. https://doi.org/10.1016/j.matpr.2022.03.613
  10. Altin, S., Anil, O. and Kara, M.E. (2005), "Improving shear capacity of existing RC beams using external bonding of steel plates", Eng, Struct., 27(5), 781-791. https://doi.org/10.1016/j.engstruct.2004.12.012.
  11. Altin, S., Tankut, T., Anil, O. and Demirel, Y. (2003), "Response of reinforced concrete beams with clamps applied externally: an experimental study", Eng. Struct., 25(9), 1217-1229. https://doi.org/10.1016/S0141-0296(03)00082-8.
  12. Anil, O. (2006), "Improving shear capacity of RC T-beams using CFRP composites subjected to cyclic load", Cement Concrete Compos., 28(7), 638-649. https://doi.org/10.1016/j.cemconcomp.2006.04.004.
  13. Arslan, G., Sevuk, F. and Ekiz, I. (2008), "Steel plate contribution to load-carrying capacity of retrofitted RC beams", Construct. Build. Mater., 22(3), 143-153. https://doi.org/10.1016/j.conbuildmat.2006.10.009.
  14. Arslan, M.H., Yazman, S., Hamad, A.A., Aksoylu, C., Ozkilic, Y. O. and Gemi, L. (2022, May), "Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics", In Structures 39, 527-542. https://doi.org/10.1016/j.istruc.2022.03.046.
  15. Aykac, S., Aykac, B., Kalkan, I. and Ozbek, E. (2013), "Strengthening of RC T-beams with perforated steel plates", 65(1), 37-51.
  16. Aykac, S., Kalkan, I., Aykac, B., Karahan, S. and Kayar, S. (2013), "Strengthening and repair of reinforced concrete beams using external steel plates", J. Struct. Eng., 139(6), 929-939. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000714.
  17. Bernat, A.M., Spinella, N., Recupero, A. and Cladera, A. (2020), "Mechanical model for the shear strength of steel fiber reinforced concrete (SFRC) beams without stirrups", Mater. Struct., 53(2), 1-20. https://doi.org/10.1617/s11527-020-01461-4.
  18. Demir, A., Ercan, E. and Demir, D.D. (2018), "Strengthening of reinforced concrete beams using external steel members", Steel Compos. Struct., 27(4), 453-464. https://doi.org/10.12989/scs.2018.27.4.453.
  19. Dere, Y. (2017), "Assessing a retrofitting method for existing RC buildings with low seismic capacity in Turkey", J. Perform. Construct. Facilities. 31(2), 04016098. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000969.
  20. Ding, F.-X., Liu, J., Liu, X.-M., Guo, F.-Q. and Jiang, L.-Z. (2016), "Flexural stiffness of steel-concrete composite beam under positive moment", Steel Compos. Struct., 20(6), 1369-1389. https://doi.org/10.12989/scs.2016.20.6.1369.
  21. Dogan, G., Ecemis, A.S., Korkmaz, S.Z., Arslan, M.H. and Korkmaz, H.H. (2021), "Buildings damages after Elazig, Turkey earthquake on January 24, 2020", Nat. Haz., 109(1), 161-200. https://doi.org/10.1007/s11069-021-04831-5
  22. Eldin, M.M., Tarabia, A.M. and Hasson, R.F. (2017), "CFRP strengthening of continuous RC T-beams at hogging moment zone across the flange", Struct. Eng. Mech., 64(6), 783-792. https://doi.org/10.12989/sem.2017.64.6.783.
  23. Fang, Z. and Wang, J. (2006), "Vertical prestressing loss in the box girder of long-span PC continuous bridges", China Civ. Eng. J. 39(5), 78-84.
  24. Ferreira, D., Bairan, J.M. and Mari, A. (2016), "Shear strengthening of reinforced concrete beams by means of vertical prestressed reinforcement", Struct. Infrastruct. Eng., 12(3), 394-410. https://doi.org/10.1080/15732479.2015.1019893.
  25. Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  26. Gemi, L., Alsdudi, M., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2022), "Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams", Steel Compos. Struct., 43(6), https://doi.org/10.12989/scs.2022.43.6.735.
  27. Godat, A., Hammad, F. and Chaallal, O. (2020), "State-of-the-art review of anchored FRP shear-strengthened RC beams: A study of influencing factors", Compos. Struct., 254, 112767. https://doi.org/10.1016/j.compstruct.2020.112767.
  28. Hadhood, A., Agamy, M.H., Abdelsalam, M.M., Mohamed, H.M. and Aly El-Sayed, T. (2019), "Shear strengthening of hybrid externally-bonded mechanically-fastened concrete beams using short CFRP strips: Experiments and theoretical evaluation", Eng. Struct., 201, 109795. https://doi.org/10.1016/j.engstruct.2019.109795.
  29. Hawileh, R.A., Abdalla, J.A., Tanarslan, M.H. and Naser, M.Z. (2011), "Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips", Comput. Concrete. 8(3), 193-206. https://doi.org/10.12989/cac.2011.8.2.193.
  30. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021a), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  31. Huang, H., Huang, M., Zhang, W., Guo, M., Chen, Z. and Li, M. (2021b), "Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP", J. Build. Eng., 43, 103123. https://doi.org/10.1016/j.jobe.2021.103123.
  32. Huang, H., Li, M., Yuan, Y. and Bai, H. (2022b), "Theoretical analysis on the lateral drift of precast concrete frame with replaceable artificial controllable plastic hinges", J. Build. Eng., 62, 105386. https://doi.org/10.1016/j.jobe.2022.105386.
  33. Huang, Y., Zhang, W. and Liu, X. (2022a), "Assessment of diagonal macrocrack-induced debonding mechanisms in FRP-strengthened RC beams", J. Compos. Construct., 26(5), 4022056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001255.
  34. Ibrahim, A.M., Abd, S.M., Hussein, O.H., Tayeh, B.A., Najm, H. M. and Qaidi, S. (2022), "Influence of adding short carbon fibers on the flexural behavior of textile-reinforced concrete one-way slab", Case Studies Construct. Mater., 17, e01601.
  35. Ibrahim, M., Wakjira, T. and Ebead, U. (2020), "Shear strengthening of reinforced concrete deep beams using near-surface mounted hybrid carbon/glass fibre reinforced polymer strips", Eng. Struct., 210, 110412. https://doi.org/10.1016/j.engstruct.2020.110412.
  36. Jiang, J., Ye, M., Chen, L. Y., Zhu, Z. W. and Wu, M. (2023), "Study on static strength of Q690 built-up K-joints under axial loads", Structures, 51, 760-775. https://doi.org/10.1016/j.istruc.2023.03.034.
  37. Kim, Y., Ghannoum, W.M. and Jirsa, J.O. (2015), "Shear behavior of full-scale reinforced concrete T-beams strengthened with CFRP strips and anchors", Construct. Build. Mater., 94, 1-9. https://doi.org/10.1016/j.conbuildmat.2015.06.005
  38. Korkmaz Serra, Z. (2015), "Observations on the Van Earthquake and Structural Failures", J. Perform. Construct. Facil., 29(1), 04014033. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000456.
  39. Korkmaz, H.H., Dere, Y., Ozkilic, Y.O., Bozkurt, M.B., Ecemis, A. S. and Ozdoner, N. (2022), "Excessive snow induced steel roof failures in Turkey", Eng. Fail. Anal., 141, 106661.
  40. Korkmaz, H.H., Yakut, A. and Bayraktar, A. (2019), "Analysis of a multi-story reinforced concrete residential building damaged under its self-weight", Eng. Fail. Anal., 98, 38-48. https://doi.org/10.1016/j.engfailanal.2019.01.043.
  41. Li, D., Nie, J., Wang, H., Yan, J., Hu, C. and Shen, P. (2023), "Damage location, quantification and characterization of steel-concrete composite beams using acoustic emission", Eng. Struct., 283, 115866. https://doi.org/10.1016/j.engstruct.2023.115866
  42. Li, Y., Wu, M., Wang, W. and Xue, X. (2021), "Shear behavior of RC beams strengthened by external vertical prestressing rebar", Adv. Civil Eng., 2021, 5483436.
  43. Liao, J., Ye, G.R. and Xu, X. (2004), "Analysis of cracks in continual box-girder with prestressed concrete bridge and assessment of reinforcement", China J. Highway Transport. 1.
  44. Liu, Y., Li, J. and Lin, G. (2023), "Seismic performance of advanced three-dimensional base-isolated nuclear structures in complex-layered sites", Eng. Struct., 289, 116247. https://doi.org/10.1016/j.engstruct.2023.116247.
  45. Madenci, E., Fayed, S., Mansour, W. and Ozkilic, Y.O. (2022a), "Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression", Steel Compos. Struct., 45(5), 653-663. https://doi.org/10.12989/scs.2022.45.5.653.
  46. Madenci, E., Ozkilic, Y.O., Aksoylu, C. and Safonov, A. (2022b), "The effects of eccentric web openings on the compressive performance of pultruded GFRP boxes wrapped with GFRP and CFRP sheets", Polymers, 14(21), 4567. https://doi.org/10.3390/polym14214567
  47. Madenci, E., Ozkilic, Y.O., Aksoylu, C., Asyraf, M.R.M., Syamsir, A., Supian, A.B.M. and Elizaveta, B. (2023a), "Experimental and analytical investigation of flexural behavior of carbon nanotube reinforced textile based composites", Materials, 16(6), 2222. https://doi.org/10.3390/ma16062222.
  48. Madenci, E., Ozkilic, Y.O., Aksoylu, C., Asyraf, M.R.M., Syamsir, A., Supian, A.B.M. and Mamaev, N. (2023b), "Buckling analysis of CNT-reinforced polymer composite beam using experimental and analytical methods", Materials, 16(2), 614. https://doi.org/10.3390/ma16020614.
  49. Nayal, R. and Rasheed, H.A. (2006), "Tension stiffening model for concrete beams reinforced with steel and FRP bars", J. Mater. Civil Eng., 18(6), 831-841. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(831).
  50. Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021), "Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour", Struct. Eng. Mech., 79(3), 309-326. https://doi.org/10.12989/sem.2021.79.3.309.
  51. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Construct. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  52. Panda, K.C., Bhattacharyya, S.K. and Barai, S.V. (2012), "Shear behaviour of RC T-beams strengthened with U-wrapped GFRP sheet", Steel Compos. Struct., 12(2), 149-166. https://doi.org/10.12989/scs.2012.12.2.149.
  53. Panda, K.C., Bhattacharyya, S.K. and Barai, S.V. (2013), "Shear strengthening effect by bonded GFRP strips and transverse steel on RC T-beams", Struct. Eng. Mech., 47(1), 75-98. https://doi.org/10.12989/sem.2013.47.1.075.
  54. Panigrahi, S.K. and Ranjan Das, R. (2016), "Study and analysis of damages in functionally graded adhesively bonded joints of laminated FRP composites: A critical review", Rev. Adhes. Adhesiv., 4(2), 152-165. https://doi.org/10.7569/RAA.2016.097305
  55. Peng, J., Tang, H. and Zhang, J. (2017), "Structural behavior of corroded reinforced concrete beams strengthened with steel plate", J. Perform. Construct. Facil., 31(4), 04017013. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001004.
  56. Qaidi, S., Al-Kamaki, Y.S., Al-Mahaidi, R., Mohammed, A.S., Ahmed, H.U., Zaid, O. and Bennetts, I. (2022), "Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate", PLoS One, 17(7), e0269664.
  57. Shamsai, M., Sezen, H. and Khaloo, A. (2007), "Behavior of reinforced concrete beams post-tensioned in the critical shear region", Eng. Struct., 29(7), 1465-1474. https://doi.org/10.1016/j.engstruct.2006.07.026
  58. Sun, X., Chen, Z., Sun, Z., Wu, S., Guo, K., Dong, Z. and Peng, Y. (2023), "High-efficiency utilization of waste shield slurry: A geopolymeric Flocculation-Filtration-Solidification method", Construct. Buildi. Mater., 387, 131569. https://doi.org/10.1016/j.conbuildmat.2023.131569.
  59. Vedernikov, A., Gemi, L., Madenci, E., Ozkilic, Y.O., Yazman, S., Gusev, S. and Safonov, A. (2022), "Effects of high pulling speeds on mechanical properties and morphology of pultruded GFRP composite flat laminates", Compos. Struct., 301, 116216. https://doi.org/10.1016/j.compstruct.2022.116216.
  60. Wang, C.-S., Gao, S., Ren, T.-X. and Xu, Y. (2010), "Bending behavior experiment of damage RC T-beams with steel plate and concrete composite strengthening", Jianzhu Kexue Yu Gongcheng Xuebao(Journal of Architecture and Civil Engineering). 27(3), 94-101.
  61. Xu, Q., Chen, L., Han, C., Harries, K.A. and Xu, Z. (2019), "Experimental research on fire-damaged RC continuous T-beams subsequently strengthened with CFRP sheets", Eng. Struct., 183, 135-149. https://doi.org/10.1016/j.engstruct.2019.01.025.
  62. Xue, X., Wang, X., Hua, X., Wu, M., Wu, L., Ma, Z. and Zhou, J. (2019), "Experimental investigation of the shear behavior of a concrete beam without web reinforcements using external vertical prestressing rebars", Adv. Civil Eng., 2019, 3452056. https://doi.org/10.1155/2019/3452056.
  63. Yao, Y., Huang, H., Zhang, W., Ye, Y., Xin, L. and Liu, Y. (2022). "Seismic performance of steel-PEC spliced frame beam", J. Construct. Steel Res., 197, 107456. https://doi.org/10.1016/j.jcsr.2022.107456.
  64. Yavuz, G. (2019), "Determining the shear strength of FRP-RC beams using soft computing and code methods", Comput. Concrete. 23(1), 49-60. https://doi.org/10.12989/cac.2019.23.1.049.
  65. Yu, Y., Yang, Y., Xue, Y. and Liu, Y. (2020), "Shear behavior and shear capacity prediction of precast concrete-encased steel beams", Steel Compos. Struct., 36(3), 261-272. https://doi.org/10.12989/scs.2020.36.3.261.
  66. Zaki, M.A. and Rasheed, H.A. (2020), "Behavior of reinforced concrete beams strengthened using CFRP sheets with innovative anchorage devices", Eng. Struct., 215, 110689. https://doi.org/10.1016/j.engstruct.2020.110689.
  67. Zaki, M.A., Rasheed, H.A., Roukerd, R.R. and Raheem, M. (2020), "Performance of reinforced concrete T beams strengthened with flexural CFRP sheets and secured using CFRP splay anchors", Eng. Struct., 210, 110304. https://doi.org/10.1016/j.engstruct.2020.110304.
  68. Zhai, S., Lyu, Y., Cao, K., Li, G., Wang, W. and Chen, C. (2023), "Seismic behavior of an innovative bolted connection with dual-slot hole for modular steel buildings", Eng. Struct., 279, 115619. https://doi.org/10.1016/j.engstruct.2023.115619.
  69. Zhang, C. (2022a), "The active rotary inertia driver system for flutter vibration control of bridges and various promising applications", Sci. China Technol. Sci., https://doi.org/10.1007/s11431-022-2228-0.
  70. Zhang, C., Yin, Y., Yan, H., Zhu, S., Li, B., Hou, X. and Yang, Y. (2022b), "Centrifuge modeling of multi-row stabilizing piles reinforced reservoir landslide with different row spacings", Landslides. https://doi.org/10.1007/s10346-022-01994-5.
  71. Zhang, Z., Li, W. and Yang, J. (2021), "Analysis of stochastic process to model safety risk in construction industry", J. Civil Eng. Manage,, 27(2), 87-99. https://doi.org/10.3846/jcem.2021.14108.
  72. Zhou, C., Ren, D. and Cheng, X. (2017), "Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top", Struct. Eng. Mech., 64(1), 135-143. https://doi.org/10.12989/sem.2017.64.1.135.
  73. Zhou, P., Li, C., Bai, Y., Dong, S., Xian, G., Vedernikov, A. and Yue, Q. (2022), "Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications", Construct. Build. Mater., 349, 128694. https://doi.org/10.1016/j.conbuildmat.2022.128694.