• Title/Summary/Keyword: Steel alloy

Search Result 1,257, Processing Time 0.024 seconds

Algorithm for Grade Adjust of Mixture Optimization Problem (혼합 최적화 문제의 성분 함량 조절 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.177-182
    • /
    • 2021
  • Generally, the linear programming (LP) with O(n4) time complexity is applied to mixture optimization problem that can be produce the given ingredients grade product with minimum cost from mixture of various raw materials. This paper suggests heuristic algorithm with O(n log n) time complexity to obtain the solution of this problem. The proposed algorithm meets the content range of the components required by the alloy steel plate while obtaining the minimum raw material cost, decides the quantity of raw material that is satisfied with ingredients grade for ascending order of unit cost. Although the proposed algorithm applies simple decision technique with O(n log n) time complexity, it can be obtains same solution as or more than optimization technique of linear programing.

Modeling of Cementite Precipitation Kinetics on Solute Carbon Content in Extra and Ultra Low Carbon Steels (극저탄소강의 고용 탄소 함량에 미치는 시멘타이트 석출 속도 모델링)

  • Choi, Jong Min;Park, Bong June;Kim, Sung Il;Lee, Kyung Sub;Lee, Kyung Jong
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.187-193
    • /
    • 2010
  • The solute carbon content in ferrite is one of the important factors to obtain good formability in low carbon steels. Although most of the carbons are consumed by the formation of grain boundary cementite during coiling after hot-rolling, the carbon content after coiling is normally observed much more than that of equilibrium. In this study, a classical nucleation and growth model is used to simulate the precipitation kinetics of the grain boundary cementite from coiling temperature (CT) to room temperature (RT). The predicted precipitation behaviors depending on the initial carbon content and the cooling rate are compared with the reported. As a result, the lateral growth of thickening of cementite is a major factor for the sluggish reaction of grain boundary cementite. The reduction of solute carbon content after coiling is divided into three regions: a) increase due to no cementite precipitation, b) decrease due to the fast length-wise growth of cementite, c) increase due to the slow thickness-wise growth of cementite.

Evaluating Nanomechanical Properties on Interface of Friction-welded TiAl and SCM440 Alloys with Cu as an Insert Metal (삽입금속 Cu를 적용한 TiAl 합금과 SCM440의 마찰용접 계면의 나노역학물성 평가)

  • Kim, Ki-Young;Oh, Myung-Hoon;Choi, In-Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.309-314
    • /
    • 2021
  • Due to the superior corrosion resistance and mechanical properties of TiAl alloy at high temperature, it has been utilized as a turbine wheel of a turbocharger. The dissimilar metallic bonding is usually applied to combine the TiAl turbine wheel with the SCM440 structural steel which is used as a driving shaft. In this study, the TiAl and SCM440 joint were fabricated by using a friction welding technique. During bonding process, to suppress the martensitic transformation and the formation of cracks, which might reduce a strength of the joints, Cu was used as an insert metal to relieve stress. As a result, the intermetallic compounds (IMCs) layer was observed at TiAl/Cu interface while no IMC formation was formed at SCM440/Cu interface. Since understanding of the IMCs effects on the mechanical performance of welded joint is also essential for ensuring the reliability and integrity of the turbocharger system, we estimated the nanohardness of welded joint region through nanoindentation. The relation between the microstructural feature and its mechanical property is discussed in detail.

Solid Particle Erosion Properties of Hot-Dip Aluminized Economizer Steel Tube (용융 알루미늄 도금된 절탄기 강재 튜브의 고상입자 침식 특성)

  • Park, Il-Cho;Han, Min-Su
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.384-390
    • /
    • 2021
  • In this paper, durability evaluation and surface damage mechanism were investigated through solid particle erosion (SPE) test after applying hot-dip aluminizing (HDA) technology for the purpose of maintenance of marine economizer tube. Damaged surface shape was analyzed using SEM and 3D microscope. Compositional changes and microstructure of the HDA layer were analyzed through EDS and XRD. Durability was evaluated by analyzing weight loss and surface damage depth after SPE. HDA was confirmed to have a two-layer structure of Al and Al5Fe2. HDA+HT was made into a single alloy layer of Al5Fe2 by diffusion treatment. In the microstructure of HDA+HT, void and crack defect were induced during the crystal phase transformation process. The SPE damage mechanism depends on material properties. Plastic deformation occurred in the substrate and HDA due to ductility, whereas weight loss due to brittleness occurred significantly in HDA+HT. As a result, the substrate and HDA showed better SPE resistance than HDA+HT.

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

A Study on the Fatigue Crack Propagation Behavior of Cr-Mo-V Alloy with Micro Defects at High Temperature. (미소 원공결함을 갖는 Cr-Mo-V강의 고온피로 크랙전파거동)

  • Song, Samhong;Kang, Myungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.70-77
    • /
    • 1996
  • Fatigue tests were carried out at high temperature on a Cr-Mo-V steel in order to assess the fatigue life of components used in power plants. The characteristics of high temperature fatigue were divided in terms of cycle-dependent fatigue and time-dependent fatigue, each crack propagation rate was examined with respect to fatigue J-integral range, .DELTA. J$_{f}$and creep J-integral range, .DELTA. J$_{c}$. The fatigue life was evaluated by analysis of J-integral value at the crack tip with a dimensional finite element method. The results obtained from the present study are summarized as follows : The propagation characteristics of high temperature fatigue cracks are determined by .DELTA. J$_{f}$for the PP(tensile plasticity-compressive plasticity deformation) and PC(tensile plasticity - compressive creep deformation) stress waveform types, and by .DELTA. J$_{c}$for the CP(tensile creep- compressive plasticity deformation) stress waveform type. The crack propagation law of high temperature fatigue is obtained by analysis of J-integral value at the crack tip using the finite element method and applied to examine crack propagation behavior. The fatigue life is evaluated using the results of analysis by the finite element method. The predicted life and the actual life are close, within a factor of 2.f 2.f 2.

  • PDF

Analysis of beam-column joints reinforced with SMAs under monotonous loading with existence of transverse beam

  • Halahla, Abdulsamee M.;Tahnat, Yazan B. Abu;Dwaikat, Monther B.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.231-243
    • /
    • 2022
  • Beam-column joints (BCJs) are recognized among the most crucial zones in reinforced concrete structures, as they are the critical elements subjected to a complex state of forces during a severe earthquake. Under such conditions, BCJs exhibit behaviors with impacts that extend to the whole structure and significantly influence its ductility and capability of dissipating energy. The focus of this paper is to investigate the effect of undamaged transverse beam (secondary beams) on the ductility of concrete BCJs reinforced with conventional steel and shape memory alloys bars using pushover analysis at tip of beam under different axial load levels at the column using a nonlinear finite element model in ABAQUS environment. A numerical model of a BCJ was constructed and the analysis outcomes were verified by comparing them to those obtained from previous experiments found in the literature. The comparison evidenced the capability of the calibrated model to predict the load capacity response of the joint. Results proved the ability of undamaged secondary beams to provide a noticeable improvement to the ductility of reinforced concrete joints, with a very negligible loss in load capacity. However, the effect of secondary beams can become less significant if the beams are damaged due to seismic effects. In addition, the axial load was found to significantly enhance the performance of BCJs, where the increase in axial load magnified the capacity of the joint. However, higher values of axial load resulted in greater initial stiffness of the BCJ.

Self-centering passive base isolation system incorporating shape memory alloy wires for reduction in base drift

  • Sania Dawood;Muhammad Usman;Mati Ullah Shah;Muhammad Rizwan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.531-543
    • /
    • 2023
  • Base isolation is one of the most widely implemented and well-known technique to reduce structural vibration and damages during an earthquake. However, while the base-isolated structure reduces storey drift significantly, it also increases the base drifts causing many practical problems. This study proposes the use of Shape Memory Alloys (SMA) wires for the reduction in base drift while controlling the overall structure vibrations. A multi-degree-of-freedom (MDOF) structure along with base isolators and Shape-Memory-Alloys (SMA) wires in diagonal is tested experimentally and analytically. The isolation bearing considered in this study consists of laminates of steel and silicon rubber. The performance of the proposed structure is evaluated and studied under different loadings including harmonic loading and seismic excitation. To assess the seismic performance of the proposed structure, shake table tests are conducted on base-isolated MDOF frame structure incorporating SMA wires, which is subjected to incremental harmonic and historic seismic loadings. Root mean square acceleration, displacement and drift are analyzed and discussed in detail for each story. To better understand the structure response, the percentage reduction of displacement is also determined for each story. The result shows that the reduction in the response of the proposed structure is much better than conventional base-isolated structure.

Design of Shear Fracture Specimens for Sheet Metals Using Finite Element Analyses (유한요소해석을 이용한 금속 판재용 전단 파단 시편 설계)

  • C. Kim;H.J. Bong;M.G. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.92-99
    • /
    • 2023
  • In this study, shear fracture specimens are designed using finite element analyses for the characterization of ductile fracture criteria of metal sheets. Many recently suggested ductile fracture criteria require experimental fracture data at the shear stress states in the model parameter identification. However, it is challenging to maintain shear stress states in tension-based specimens from the initial yield to the final fracture, and the loading path can be different for the different materials even with the same shear specimen geometries. To account for this issue, two different shear fracture specimens for low ductility/high ductility metal sheets are designed using the sensitivity tests conducted by finite element simulations. Priorly mechanical properties including the Hosford-Coulomb fracture criterion of the aluminum alloy 7075-T6 and DP590 steel sheets are used in the simulations. The results show that shear stress states are well-maintained until the fracture at the fracture initiation points by optimizing the notch geometries of the shear fracture specimens.

Pilot study for investigating behavior of recentering frame connection equipped with friction damper

  • Kim, Young Chan;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.569-586
    • /
    • 2022
  • This study introduces a novel friction damper as a component of a recentering frame connection, to solve the problem of structural repair costs, caused by stiffness deterioration and brittle fracture of the central brace frame (CBF). The proposed damper consists of shape memory alloy (SMA) bars with pretension applied to them to improve the stability. SMAs reduce the residual displacement by virtue of the properties of the materials themselves; in addition, a pretension can be applied to partially improve their energy dissipation capacity. The damper also consists of a friction device equipped with friction bolts for increased energy dissipation. Therefore, a study was conducted on the effects of the friction device as well as the pretension forces on the friction damper. For performance verification, 12 cases were studied and analyzed using ABAQUS program. In addition, the friction and pretension forces were used as variables in each case, and the results were compared. As a result, when the pretension and friction force are increased, the energy dissipation capacity gradually increases by up to about 94% and the recentering capacity decreases by up to about 55%. Therefore, it has been shown that SMA bars with adequate pretension in combination with bolts with adequate frictional force effectively reduce residual deformation and increase damper capacity. Thus, this study has successfully proposed a novel friction damper with excellent performance in terms of recentering and energy dissipation capacity.