• Title/Summary/Keyword: Steel Mixing

Search Result 223, Processing Time 0.033 seconds

Numerical Simulation of Steel Mixing during Sequential Casting of Dissimilar Grades in the Continuous Caster (연속주조시 강종 혼합에 관한 수치해석적 연구)

  • Cho, M.J.;Kim, I.C.;Kim, S.J.;Park, H.;Lee, S.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.436-443
    • /
    • 2001
  • In order to investigate the mixing of dissimilar grades during the arbitrary grade transition in bloom caster, a computational model has been developed. The model is fully transient and consists of two sub models, which account for mixing in the bloom tundish, mixing in the strand. The developed model was verified using concentration histories measured on 1 : 1 scale bloom tundish water model. The result of numerical model showed good agreement with the experimental results of water model. By using this numerical model, the mixing of dissimilar grades in bloom caster has been simulated. As that result, the characteristics of the steel mixing in the bloom tundish and strand was showed and the amount of the intermixed grade bloom was predicted.

  • PDF

Studies on the Properties of Fiber Reinforced Porous Concrete Using Polymer (섬유보강 폴리머 포러스콘크리트의 특성에 관한 실험적 연구)

  • Park, Seong-Bum;Lee, Byung-Jae;Lee, Jun;Son, Sung-Woo;Cho, Kwang-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.581-584
    • /
    • 2006
  • This study is analyzed mechanical properties and durability of permeability porous concrete to mix polymer and steel fiber for the enhance of performance and durability of porous concrete. It proves that void ratio and permeability are tallied with internal and external standard of paving porous concrete. A property of strength is increased according as the mixing rate of polymer and steel fiber increase, but it showed the tendency to be reduced on the contrary when mixed upwards of 20% of polymer mixing rate and 0.9vol.% of steel fiber mixing rate. As a result, it is possible to make an enhanced which increased 16% of compressive strength and 30% of flexural strength steel fiber reinforced polymer porous concrete at the mixing rate of 10vol.% of polymer and 0.6% of steel fiber.

  • PDF

Assessment of flexural performance of hybrid fiber reinforced concrete. (하이브리드 섬유보강 콘크리트의 휨성능 평가)

  • Kim, Hag-Youn;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.337-340
    • /
    • 2005
  • In this study, an effect of fiber blending on material property of Hybrid Fiber Reinforced Concrete (HFRC) was evaluated. Also, Compare and evaluates collating and mechanical property by the mixing rate of fiber for HFRC was determine. Modulus of rupture and strength effectiveness of Hybrid Fiber Reinforced Concrete mixed with macro-fiber(steel fiber) and micro-fiber(glass fiber, carbon fiber, cellulose fiber). Test result shows, in the case of mono fiber reinforced concrete. As the steel fiber mixing rate increases to 1.5$\%$, the strength effectiveness promotion rate rises. However, when is 2.0$\%$, strength decreases. In the case of hybrid fiber reinforcement concrete, synergy effect of micro fiber and macro fiber happens and higher Modulus of rupture and strength effectiveness appears than mono-fiber reinforcement concrete. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber + carbon fiber and contributed by steel fiber + glass fiber, steel fiber + celluloid fiber in reinforcement effect in order. And was expose that steel fiber(1.5$\%$) + carbon fiber(0.5$\%$) is most suitable association.

  • PDF

Flowing Characteristic of High Flowing Self-Compacting Concrete with mixing Steel Fiber (강섬유 혼입에 따른 고유동 자기충전 콘크리트의 유동특성)

  • Choi, Yun-Wang;Choi, Wook;Kim, Gi-Beom;Jeong, Jae-Gwon;Ahn, Tae-Ho;Eom, Joo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.461-464
    • /
    • 2008
  • This study is compactability and Passing ability to get to know the flowing characteristic of high flowing self-compacting concrete with mixing steel fiber of various size and diameter. After flowing test, size and diameter are getting longer, flowing performance is getting lower. It meets the standard of combined high flowing self-compacting concrete of JSCE 2 grade and passing performance from ASTM C 1621. Through this study, it can be possible to be applied in site of HSCC with mixing steel fiber.

  • PDF

Fracture Charateristics of the Pre-Cracked fibrous Concrete Beams (前 龜裂을 준 鋼纖維 콘크리트보의 破壞特性)

  • Kwark, Kae-Hwan;Park, Jong-Gun;Park, Sai-Woong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.2
    • /
    • pp.49-59
    • /
    • 1992
  • In our researches we made mix-design, with the mixing ratio and pre-cracked ratio of steel fibrous different from each other, building the steel fibrous concrete beam which had pre-cracks. To obtain the fracture characteristics of steel fibrous reinforced concrete, series of experiment were conducted on pre-cracked beam subjected to 3-point bending. Thus, we carried out experiments on the destructive characteristics of its pre-crack and post-crack and the result is as follows. 1. The compressive strength of steel fibrous concrete beam increased more slightly than plane beam, and the tensile strength increased 37%, 59%, 94% and 121% respectively when the amount of fibrous was 0.5%, 0.1% 1.5%, and 1.75% respectively. 2. As the amount of steel fibrous mixing increased ant the steel fibrous inhibited the crack growth, the crack condition of steel fibrous concrete beam was retarded irregularly, and this increased fracture load. 3. The defiance of destruction was reduced in the ratio of 1.35 times and 1.22 times respectively when the length of pre-crack was each 2cm and 4cm in comparison with the case of being without the length, and was similar to that of plane beam when the amount of steel fibrous mixing was below 1.0%, and increased linearly when it as above 1.0%. 4. The experimental formula seeking fracture energy was follows and thus we found that the value of fracture energy depended upon tensile strength and the size of speciment. $G_f=K\;{\cdot}\;f_f^'{\cdot}$da/Ec 5. We observed that in the load-strain curve of steel fibrous concrete beam the progress of the crack became slow, compared with plane beam because the crack condition became long to the extent of about 10 times. Concrete was faultiest brittleness fracture through the study, it was known ductile.

  • PDF

A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination (염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구)

  • Kim, Do-Gyeum;Park, Seung-Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF

A Study on the Structural Characteristic of Recycled Aggregate Concrete Reinforced Steel Fiber (강섬유 혼입 순환골재 콘크리트의 구조적 특성에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Park, Young-Bai;Kim, Jeong-Hoon;Cho, Chang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.35-42
    • /
    • 2008
  • In this study, a sample was fabricated according to the recycled aggregate replacement level(0%, 30%, 60%), and the steel fiber mixing status in order to use recycled aggregate as a concrete alternative coarse aggregate, and then the materials and structural characteristics of recycled aggregate and steel fiber which impacted the reinforced concrete were analyzed. A conclusion was derived as follows. After considering the results of various material experiments and mock-up test, when a flexural strength and a ductility factor is increased and the replacement level is increased through mixing the steel fiber with the recycled aggregate concrete, the ductility and flexural strength reduction seems to be inhibited by adding the steel fiber. Also, it is indicated that the recycled aggregate has almost-similar compressive strength, tensile strength flexural strength and ductility capacity to the concrete which using the general gone even though the steel fiber is used and the replacement level is increased to 30%. Accordingly, the reinforced concrete frame using the steel fiber mixture and recycled aggregate seems to apply to the actual structure.

An Experimental Study on the Mechanical Properties of Porous Concrete Using Coal Ash and Polymer (석회석 골재를 사용한 강섬유보강 포러스콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Jang, Young-Il;Jeon, Heum-Jin;Lee, Taek-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.685-688
    • /
    • 2008
  • Concrete is strong on the compressive property, but weak on the tensile and flexural properties. To improve these problems, the reinforcing bar is used in concrete. But porous concrete with steel fiber has a weak point when exposed to air, because porous concrete has the vast continuous void on its inside and steel fiber is easily rusted by air. For these reasons, this study investigated the void ratio, compressive strength, bending strength and bending toughness as steel fiber mixing ratio and target void ratio. From test results, actual void ratio and strength properties increased as the mixing ratio of steel fiber increase. In case the mixing ratio of steel fiber over the fixed ratio, strength is decreased. And from the toughness evaluation, compared to the porous concrete which isn't mixed with steel fiber, the deflection variation efficiency is remarkably improved. Consequently we can confirm the possibility of porous concrete with steel fiber for the secondary product and pavement material to improve strength and bending resistance efficiency.

  • PDF

Properties of Fresh Mortar Mixed with Steel Furnace Slag Powder (제강슬래그 분말을 혼입한 굳지 않은 모르타르의 특성)

  • Lee, Jeong-Taek;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.33-34
    • /
    • 2023
  • Currently, research on construction materials using industrial by-products is being conducted in the Inhan construction industry due to CO2 emissions during the cement production process and a shortage of aggregates. Among these, research has been conducted to use steel furnace slag as an aggregate by reducing the reactivity of free-CaO, which has the characteristic of expanding through open storage, aging, and rapid cooling. However, research on the use of powder as a cement admixture or substitute is insufficient. Therefore, this study aims to analyze the properties of fresh mortar using steel furnace slag powder. The mixing ratio of steel furnace slag powder was divided into three levels: 0, 20, and 40 (%), and the test items were flow and unit weight. The experimental results showed that as the mixing ratio of steel furnace slag powder increased, flow and unit weight tended to increase. Therefore, it is expected to have a positive effect on improving workability or strength as a cement admixture.

  • PDF

Parametric Study on Gloss Property of UV Curable Coated Steel (자외선 코팅 강판의 광택도에 미치는 공정 변수에 대한 연구)

  • Hwang, Dong Seop;Cho, Dong Chul;Yoo, Hye Jin;Kim, Jong Sang;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.15 no.3
    • /
    • pp.116-122
    • /
    • 2014
  • This work deals with the effects of different oligomers, monomers, photoinitiators, and steel plates on the variation of gloss for UV coated steel plates at $20^{\circ}$ and $60^{\circ}$ (ASTM D523). The gloss value was more significantly varied with $20^{\circ}$ angle as compared with $60^{\circ}$. No substantial change in gloss was observed for the type of single oligomer; however, the gloss varied with the mixing ratios of oligomers, type and mixing ratio of monomers, type and concentration of photoinitiator, and type of steel plate. The maximum gloss value was observed when the mixing ratio of polyurethane acrylate (UA) to epoxy acrylate (EA) was 70 : 30, the mixing ratio of trimethylolpropantriacrylate (TMPTA) to tetrahydrofurfurylacrylate (THFA) was 5 : 5, the content of the mixed oligomer (UA : EA = 70 : 30) was 90 wt%, respectively. Darocur MBF of liquid type showed better gloss property than the solid type of Irgacure 184, and the gloss was decreased as the concentration of Darocur MBF increased from 1 to 4 wt%. Regarding the type of steel plate, GI steel plate showed better gloss property as compared with EG and primer-coated steel plates. The maximum gloss values of 95 GU and 120 GU, respectively, at $20^{\circ}$ and $60^{\circ}$ angles throughout the parametric study in the absence of leveling agents enhancing the gloss.