• 제목/요약/키워드: Steel Core

검색결과 805건 처리시간 0.022초

Structural behavior of slender circular steel-concrete composite columns under various means of load application

  • Johansson, Mathias;Gylltoft, Kent
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.393-410
    • /
    • 2001
  • In an experimental and analytical study on the structural behavior of slender circular steel-concrete composite columns, eleven specimens were tested to investigate the effects of three ways to apply a load to a column. The load was applied eccentrically to the concrete section, to the steel section or to the entire section. Three-dimensional nonlinear finite element models were established and verified with the experimental results. The analytical models were also used to study how the behavior of the column was influenced by the bond strength between the steel tube and the concrete core and the by confinement of the concrete core offered by the steel tube. The results obtained from the tests and the finite element analyses showed that the behavior of the column was greatly influenced by the method used to apply a load to the column section. When relying on just the natural bond, full composite action was achieved only when the load was applied to the entire section of the column. Furthermore, because of the slenderness effects the columns did not exhibit the beneficial effects of composite behavior in terms of increased concrete strength due to the confinement.

Structural behavior of sandwich composite wall with truss connectors under compression

  • Qin, Ying;Chen, Xin;Zhu, Xingyu;Xi, Wang;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.159-169
    • /
    • 2020
  • Sandwich composite wall consists of concrete core attached by two external steel faceplates. It combines the advantage of steel and concrete. The appropriate composite action between steel faceplate and concrete core is achieved by using adequate mechanical connectors. This research studied the compressive behavior of the sandwich composite walls using steel trusses to bond the steel faceplates to concrete infill. Four short specimens with different wall width and thickness of steel faceplate were designed and tested under axial compression. The test results were comprehensively evaluated in terms of failure modes, load versus axial and lateral deformation responses, resistance, stiffness, ductility, strength index, and strain distribution. The test results showed that all specimens exhibited high resistance and good ductility. Truss connectors offer better restraint to walls with thinner faceplates and smaller wall width. In addition, increasing faceplate thickness is more effective in improving the ultimate resistance and axial stiffness of the wall.

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

고경도 금형강의 와이어 방전가공특성에 관한 연구 (A Study on the Characteristics of Wire Electrical Discharge Machining of the High-Hardened Mold Steel)

  • 이상훈;정태성
    • 소성∙가공
    • /
    • 제15권9호
    • /
    • pp.648-653
    • /
    • 2006
  • In this study, the characteristics of Wire Electrical Discharge Machining(WEDM) of the high-hardened mold steel were investigated. WEDM experiments have been carried out based on parameter of wire diameter, pulse on time, pulse off time, feed rate and cycle etc. From the results, the optimized WEDM cycle of RIGOR steel has been revealed as $5{\sim}7$ times. Also, geometrical accuracy of the Core Pin is dependent on WEDM wire radius machining condition and wire chattering.

자기부상열차 추진용 리니어모터 효율향상 설계연구 (A Study on Design of Linear Motor for Maglev for High Efficiency)

  • 김윤현;김기찬
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.561-566
    • /
    • 2016
  • In this paper, effective design method of linear induction motor(LIM) for Maglev is proposed in order to maximize system efficiency of Maglev. For the high system efficiency of Maglev, it is important to minimize weight of traction motor. Light weight design by changing materials of core and winding is conducted without changing volume of LIM. For the silicon steel core of primary part for magnetic flux path, iron-cobalt alloy steel with high magnetic saturation characteristic compared to silicon steel is suggested. Moreover, aluminium winding with light weight instead of copper winding is wounded in the widen slot area due to the high magnetic saturation level. For the verification of performance of proposed model, the characteristics are analyzed by using finite element method(FEM).

Study on rectangular concrete-filled steel tubes with unequal wall thickness

  • Zhang, Yang;Yu, Chen-Jiang;Fu, Guang-Yuan;Chen, Bing;Zhao, She-Xu;Li, Si-Ping
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1073-1084
    • /
    • 2016
  • Rectangular concrete-filled steel tubular columns with unequal wall thickness were investigated in the paper. The physical centroid, the centroidal principal axes of inertia, and the section core were given. The generalized bending formula and the generalized eccentric compression formula were deduced, and the equation of the neutral axis was also provided. The two rectangular concrete-filled steel tubular stub specimens subjected to the compression load on the physical centroid and the geometric centroid respectively were tested to verify the theoretical formulas.

Eccentric compressive behavior of novel composite walls with T-section

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.495-508
    • /
    • 2020
  • Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.

샌드위치 판재의 차량적용 기술개발 (Development of Application Technique for a Car Body with Aluminium Sandwich Panels)

  • 이명호;유용문;윤의박;이경남;이중윤;금영탁
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.603-609
    • /
    • 1998
  • An aluminium sandwich sheet is the material fabricated by adhering two aluminum panels to one plastic core. When it has the same bending stiffness as an steel panel it is 65% lighter than steel panel and 30% lighter than aluminum panel. Therefore it is notified exclusively as good substitutive materials for steel body to improve fuel efficiency. An aluminium sandwich sheet, however, has a problem of the lower formability than steel in automotive application. In this paper we intend to develop application technologies of an aluminum sandwich sheet for auto body panels from selecting composed materials of aluminium sandwich sheets to fabricating prototype. We selected aluminium sandwich panels fabricated by Hoogovens company. Through formability tests we have designed the hood part on auto body panels and fabricated a mould and a prototype.

  • PDF

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Cyclic testing of short-length buckling-restrained braces with detachable casings

  • Pandikkadavatha, Muhamed S.;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.699-716
    • /
    • 2016
  • Buckling-restrained braced frames (BRBFs) are commonly used as lateral force-resisting systems in the structures located in seismic-active regions. The nearly symmetric load-displacement behavior of buckling-restrained braces (BRBs) helps in dissipating the input seismic energy through metallic hysteresis. In this study, an experimental investigation has been conducted on the reduced-core length BRB (RCLBRB) specimens to evaluate their hysteretic and overall performance under gradually increased cyclic loading. Detachable casings are used for the concrete providing confinement to the steel core segments of all test specimens to facilitate the post-earthquake inspection of steel core elements. The influence of variable core clearance and the local detailing of casings on the cyclic performance of RCLBRB specimens has been studied. The RCLBRB specimen with the detachable casing system and a smaller core clearance at the end zone as compared to the central region exhibited excellent hysteretic behavior without any slip. Such RCLBRB showed balanced higher yielding deformed configuration up to a core strain of 4.2% without any premature instability. The strength-adjustment factors for the RCLBRB specimens are found to be nearly same as that of the conventional BRBs as noticed in the past studies. Simple expressions have been proposed based on the regression analysis to estimate the strength-adjustment factors and equivalent damping potential of the RCLBRB specimens.