• Title/Summary/Keyword: Steel Base

Search Result 1,062, Processing Time 0.029 seconds

Analysis of stability on steel D&I can (Steel D&I Can의 안정성 해석)

  • Cho, S.J.;You, C.S.;Jung, S.W.;Park, H.C.;Hwang, W.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.471-476
    • /
    • 2001
  • The main object of this study is to develop a reliable FEM simulation technique for stability test using ABAQUS software and to clarify the effect of base profile of a steel D&I(drawn and ironed) can on the dome reversal pressure. For the can after body making simulation, two kind of stability test, dome buckle test and axial crush test are performed. The factors studied in the base profile on the dome reversal pressure are the base diameter, the rim radius, the dome shoulder radius, the dome radius and the dome depth. Within the limits before the occurrence of normal snap-through buckling of dome, the dome reversal pressure is improved by decreasing the base diameter, increasing the dome depth or increasing the dome shoulder depth.

  • PDF

A Newly Synthesized Schiff Base Derived from Condensation Reaction of 2,5-dichloroaniline and benzaldehyde: Its Applicability through Molecular Interaction on Mild Steel as an Acidic Corrosion Inhibitor by Using Electrochemical Techniques

  • Ozkir, Demet
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.37-54
    • /
    • 2019
  • A new organic Schiff base compound N-benzylidene-2,5-dichloroaniline (BDC) was synthesized and the structure of the Schiff base is illuminated by some spectroscopic techniques. In addition, whether it is an applicable inhibitor in the industrial field was examined by conventional methods such as linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization for different concentrations. The BDC concentration and temperature effects were surveyed for elucidating the inhibitive mechanism. The BDC molecules are adsorbed to surface of mild steel via the Langmuir isotherm. Atomic force (AFM) and scanning electron microscope (SEM) techniques were utilized to give insight into surface characterization.

A Study on the Impact Toughness and Microstructure change for High Nitrogen TiN Steel Alloy with Welding Heat Input. (용접 입열량에 따른 고질소 TiN 강재의 용접부 충격인성 및 미세조직 변화에 관한 연구)

  • Gwon Sun Du;Lee Gwang Hak;Park Dong Hwan
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.123-124
    • /
    • 2004
  • This study was investigated on the impact toughness and microstructure of welded metal and heat affected zone for Hi Nitrogen TiN Steel. With welding procedures, welding heat input applied were 30, 79 and 264 kJ/cm. TiN steel has shown very small prior austenite grain size for all the welding heat input applied, which was considered to result from the effect of TiN particles. In case of single SAW and EGW welding, the dilution rate of base metal into the weld was not high, resulting that there were no significant effects of base metal chemical composition on the mechanical properties of welds. However, TSAW with double Ypreparation carried very high dilution rate so that TiN steel has impaired the toughness of weld metal because N content in the weld was increased through the dilution of base metal.

  • PDF

Seismic Evaluation of Exposed Column-base Plate Weak-axis Connections Using L-shaped Hooked Anchor Bolts (L형 갈고리 앵커볼트를 사용한 약축방향 노출형 주각부의 내진성능 평가)

  • Lim, Woo-Young;You, Young-Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.269-280
    • /
    • 2017
  • In this study, seismic performance was evaluated for the exposed column-base plate weak-axis connections of small size steel structures through cyclic loading tests. The primary test parameters are the thickness of base plate, the presence of rib plates, the number of anchor bolts and embedment length of anchor bolts. To investigate the effect of bond performance of anchor bolts on the seismic performance of column-base plate connections, L-shaped round bars and thread bars were used as the hooked anchor bolts in the test specimens. Test results showed that bond performance of anchor bolts and the thickness of base plate significantly affect the structural performance and energy dissipation capacity. In particular, it was found that even if the requirements for minimum thickness of the base plate that is satisfied, the base plate can yield before the capacity of steel column reaches the plastic moment resulting in decreasing the structural performance of the connections. However, the proposed details of the connections might be considered as the partially restrained, that is semi-rigid connections. Consequently, the L-shaped thread anchor bolts is applicable in the exposed column-base plate weak-axis connections of small-size steel structures.

A Study on the Dynamic Behavior Characteristics of Steel Column Base using Energy Absorbtion High Strength Bolt (에너지 흡수형 고력볼트를 사용한 철골 주각부의 동적 거동 특성에 관한 연구)

  • Lee, Seung-Jae;Park, Jae-Seong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.67-76
    • /
    • 2011
  • Column base is very important part of steel structure because it transmits load to foundation in structure. Column base which is used frame construction in the inside and outside of the country is distributed into exposed-type, concrete encased and imbeded-type. Exposed-type column base is most profitable, if consider reuse and recycle of elements first of all. In this study, we proposed a new style exposed-type column base improved in performance for construction work and mechanical performance.

Rotational behavior of exposed column bases with different base plate thickness

  • Cui, Yao;Wang, Fengzhi;Li, Hao;Yamada, Satoshi
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.497-507
    • /
    • 2019
  • Exposed column base connections are used in low- to mid-rise steel moment resisting frames. This paper is to investigate the effect of the base plate thickness on the exposed column base connection strength, stiffness, and energy dissipation. Five specimens with different base plate thickness were numerically modelled using ABAQUS software. The numerical model is able to reproduce the key characteristics of the experimental response. Based on the numerical analysis, the critical base plate thickness to identify the base plate and anchor rod yield mechanism is proposed. For the connection with base plate yield mechanism, the resisting moment is carried by the flexural bending of the base plate. Yield lines in the base plate on the tension side and compression side are illustrated, respectively. This type of connection exhibits a relatively large energy dissipation. For the connection with anchor rod yield mechanism, the moment is resisted through a combination of bearing stresses of concrete foundation on the compression side and tensile forces in the anchor rods on the tension side. This type of connection exhibits self-centering behavior and shows higher initial stiffness and bending strength. In addition, the methods to predict the moment resistance of the connection with different yield mechanisms are presented. And the evaluated moment resistances agree well with the values obtained from the FEM model.

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

Analysis and design of demountable circular CFST column-base connections

  • Li, Dongxu;Wang, Jia;Uy, Brian;Aslani, Farhad;Patel, Vipul
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.559-571
    • /
    • 2018
  • In current engineering practice, circular concrete-filled steel tubular (CFST) columns have been used as effective structural components due to their significant structural and economic benefits. To apply these structural components into steel-concrete composite moment resisting frames, increasing number of research into the column-base connections of circular CFST columns have been found. However, most of the previous research focused on the strength, rigidity and seismic resisting performance of the circular CFST column-base connections. The present paper attempts to investigate the demountability of bolted circular CFST column-base connections using the finite element method. The developed finite element models take into account the effects of material and geometric nonlinearities; the accuracy of proposed models is validated through comparison against independent experimental results. The mechanical performance of CFST column-base connections with both permanent and demountable design details are compared with the developed finite element models. Parametric studies are further carried out to examine the effects of design parameters on the behaviour of demountable circular CFST column-base connections. Moreover, the initial stiffness and moment capacity of such demountable connections are compared with the existing codes of practice. The comparison results indicate that an improved prediction method of the initial stiffness for these connections should be developed.

Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System (기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석)

  • Oh, Yeong Hui;Kim, Yong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • The seismic responses of a building are affected by the base soil conditions. In this study, linear time-history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of 3-, 5-, and 7-story steel buildings, considering the rigid and soft soil conditions. Foundation soil stiffness, based on the equivalent static stiffness formula, is used for the damper, one of the Link elements in SAP 2000. The base shear forces of the steel buildings, estimated through time-history analysis using the general-purpose structural-analysis program of SAP 2000, were compared with those calculated using the domestic seismic design code, the UBC-97 design response spectrum. and pushover static nonlinear analysis. The steel buildings designed for gravity and wind loads showed elastic responses with a moderate earthquake of 0.11 g, while the elastic soft-soil layer increased the displacement and the base shear force of the buildings due to soil-structure interaction and soil amplification. Therefore, considering the characteristics of the soft-soil layer, it is more reasonable to perform an elastic seismic analysis of a building's structure during weak or moderate earthquakes.

A Study on the Stress Relief Cracking of HSLA-100 and HY-100 steels (HSLA-100강 및 HY-100강의 응력제거처리 균열에 관한 연구)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.48-57
    • /
    • 1996
  • A study was made to examine the characteristics of base metal and stress relief cracking(SRC) of heat affected zone(HAZ) for HY-100 and Cu-bearing HSLA-100 steels. The Gleeble thermal/mechanical simulator was used to simulate the SRC/HAZ. The details of mechanical properties of base plate and SRC tested specimens were studied by impact test, optical microscopy and scanning electron microscopy. The specimens were aged at $650^{\circ}C$ for HSLA-100 steel and at $660^{\circ}C$ for HY-100 steel and thermal cycled from $1350^{\circ}C$ to $25^{\circ}C$ with a cooling time of $\Delta$t_${800^{circ}C/500^{circ}C}$=21sec. corresponds to the heat input of 30kJ/cm. The thermal cycled specimens were stressed to a predetermined level of 248~600MPa and then reheated to the stress relief temperatures of $570~620^{\circ}C$. The time to failure$(t_f)$ at a given stress level was used as a measure of SRC susceptibility. The strength, elongation and impact toughness of base plate were greater in HSLA-100 steel than in HY-100 steel. The time to failure was decreased with increasing temperature and/or stress. HSLA-100 steel was more susceptible to stress relief cracking than HY-100 steel under same conditions. It is thought to be resulted from the precipitation of $\varepsilon$-Cu phase by dynamic self diffusion of solute atoms. By the precipitation of $\varepsilon$-Cu phase, the differential strengthening of grain interior relative to grain boundary may be greater in the Cu-bearing HSLA-100 steel than in HY-100 steel. Therefore, greater strain concentration at grain boundary of HSLA-100 steel results in the increased SRC susceptibility. The activation energies for SRC of HSLA-100 steel are 103.9kcal/mal for 387MPa and 87.6kcal/mol for 437MPa and that of HY-100 steel is 129.2kcal/mol for 437MPa.

  • PDF