Abstract
A study was made to examine the characteristics of base metal and stress relief cracking(SRC) of heat affected zone(HAZ) for HY-100 and Cu-bearing HSLA-100 steels. The Gleeble thermal/mechanical simulator was used to simulate the SRC/HAZ. The details of mechanical properties of base plate and SRC tested specimens were studied by impact test, optical microscopy and scanning electron microscopy. The specimens were aged at $650^{\circ}C$ for HSLA-100 steel and at $660^{\circ}C$ for HY-100 steel and thermal cycled from $1350^{\circ}C$ to $25^{\circ}C$ with a cooling time of $\Delta$t_${800^{circ}C/500^{circ}C}$=21sec. corresponds to the heat input of 30kJ/cm. The thermal cycled specimens were stressed to a predetermined level of 248~600MPa and then reheated to the stress relief temperatures of $570~620^{\circ}C$. The time to failure$(t_f)$ at a given stress level was used as a measure of SRC susceptibility. The strength, elongation and impact toughness of base plate were greater in HSLA-100 steel than in HY-100 steel. The time to failure was decreased with increasing temperature and/or stress. HSLA-100 steel was more susceptible to stress relief cracking than HY-100 steel under same conditions. It is thought to be resulted from the precipitation of $\varepsilon$-Cu phase by dynamic self diffusion of solute atoms. By the precipitation of $\varepsilon$-Cu phase, the differential strengthening of grain interior relative to grain boundary may be greater in the Cu-bearing HSLA-100 steel than in HY-100 steel. Therefore, greater strain concentration at grain boundary of HSLA-100 steel results in the increased SRC susceptibility. The activation energies for SRC of HSLA-100 steel are 103.9kcal/mal for 387MPa and 87.6kcal/mol for 437MPa and that of HY-100 steel is 129.2kcal/mol for 437MPa.