• Title/Summary/Keyword: Steel 18CrNi8

Search Result 10, Processing Time 0.027 seconds

Corrosion of Fe-Cr Steels at 600-800℃ in NaCl Salts

  • Lee, Dong Bok;Kim, Min Jung;Yadav, Poonam;Xiao, Xiao
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.354-359
    • /
    • 2018
  • NaCl-induced hot corrosion behavior of ASTM T22 (Fe-2.25Cr-1Mo), T91 (Fe-9Cr-1Mo), T92 (Fe-9Cr-1.8W-0.5Mo), 347HFG (Fe-18-Cr-11Ni), and 310H (Fe-25Cr-19Ni) steels was studied after spraying NaCl on the surface. During corrosion at $600-800^{\circ}C$ for 50-100 h, thick, non-adherent, fragile, somewhat porous oxide scales formed. All the alloys corroded fast with large weight gains owing to fast scaling and destruction of protective oxide scales. Corrosion rates increased progressively as the corrosion temperature and time increased. Corrosion resistance increased in the order of T22, T91, T92, 347HFG, and 310H, suggesting that the alloying elements of Cr, Ni, and W beneficially improved the corrosion resistance of steels. Basically, Fe oxidized to $Fe_2O_3$, and Cr oxidized to $Cr_2O_3$, some of which further reacted with FeO to form $FeCr_2O_4$ or with NiO to form $NiCr_2O_4$.

Study of Practical Cathodic Protection of 2nd Class Stainless Steel Shaft by means of Al Sacrificial Anode (AL계 희생양극에 의한 2종스테인리스 강축의 음극방식 실용화 연구)

  • Son, Yeong-Tae;Lee, Myeong-Hun;Lee, Hui-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.22
    • /
    • pp.34-53
    • /
    • 2007
  • In the case of hull material. large sized merchant ships are made of steel, on the other hand FRP or wood are used for small sized fishing boats. At present in Korea approximately 88,500 fishing boats are in operation of which 70% are made of FRP In the meantime, stainless steel is frequently used as shaft materials of the small-size FRP fishing boat. Namely, the kinds of shaft materials are STS 304(18Cr-8Ni), STS 316(18Cr-12Ni-2.5Mo steel) and STS 630(17Cr-Ni-Nb steel)etc. Among these things, STS 304 which is the cheapest and having ordinary corrosion resistance is most widely used as 2nd class shaft material. But, using STS 304 for shaft system material of the small-size FRP fishing boat on seawater environments entails a severe corrosion which causes shaft system troubles. Particularly, the corrosions tend to be concentrated of the stern and bow side, propeller shaft surface of inside of stern tube and the boat having no stern cooling pipe line system. As a solution for those problems, research on the ways to mitigate corrosion on the part of 2nd class stainless steel shaft have been undertaken. In the result, not only clarification for the reason of corrosion of the part of stainless steel shaft used mainly for the small-size FRP fishing boat was done, but also most optimal corrosion protection system was developed by experimenting shaft's protection simulation based of the electrochemical cathodic protection principle. In addition, verification through the field test on the optimal cathodic corrosion protection method by means of aluminum sacrificial anode was carried out. In this study, effective and economical shaft's protection system is suggested to the small-size FRP fishing boat operator by substantiating the results obtained from the research on the optimal cathodic protection.

  • PDF

Nitrogen Permeation Treatment of Duplex and Austenitic Stainless Steels

  • Yoo, D.K.;Joo, D.W.;Kim, Insoo;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.57-64
    • /
    • 2002
  • The 22%Cr-5%Ni-3%Mo duplex and 18%Cr-8%Ni austenitic stainless steels have been nitrogen permeated under the $1Kg/cm^2$ nitrogen gas atmosphere at the temperature range of $1050^{\circ}C{\sim}1150^{\circ}C$. The nitrogen-permeated duplex and austenitic stainless steels showed the gradual decrease in hardness with increasing depth below surface. The duplex stainless steel showed nitrogen pearlite at the outmost surface and austenite single phase in the center after nitrogen permeation treatment, while the obvious microstructural change was not observed for the nitrogen-permeated austenitic stainless steel. After solution annealing the nitrogen-permeated stainless steels(NPSA treatment) at $1200^{\circ}C$ for 10 hours, the hardness of the duplex and austenitic stainless steels was constant through the 2 mm thickness of the specimen, and the ${\alpha}+{\gamma}$ phase of duplex stainless steel changed to austenite single phase. Tensile strengths and elongations of the NPSA-treated duplex stainless steel remarkably increased compared to those of solution annealed (SA) duplex stainless steel due to the solution strengthening effect of nitrogen and the phase change from a mixture of ferrite and austenite to austenite single phase, while the NP-treated austenitic stainless steel displayed the lowest value in elongation due to inhomogeneous deformation by the hardness difference between surface and interior.

Reliable experimental data as a key factor for design of mechanical structures

  • Brnic, Josip;Krscanski, Sanjin;Brcic, Marino;Geng, Lin;Niu, Jitai;Ding, Biao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.245-256
    • /
    • 2019
  • The experimentally determined mechanical behavior of the material under the prescribed service conditions is the basis of advanced engineering optimum design. To allow experimental data on the behavior of the material considered, uniaxial stress tests were made. The aforementioned tests have enabled the determination of mechanical properties of material at different temperatures, then, the material's resistance to creep at various temperatures and stress levels, and finally, insight into the uniaxial high cyclic fatigue of the material under different applied stresses for prescribed stress ratio. Based on fatigue tests, using modified staircase method, fatigue limit was determined. All these data contributes the reliability of the use of material in mechanical structures. Data representing mechanical properties are shown in the form of engineering stress-strain diagrams; creep behavior is displayed in the form of creep curves while fatigue of the material is presented in the form of S-N (maximum applied stress versus number of the cycles to failure) curve. Material under consideration was 18CrNi8 (1.5920) steel. Ultimate tensile strength and yield strength at room temperature and at temperature of $600^{\circ}C$: [${\sigma}_{m,20/600}=(613/156)MPa$; ${\sigma}_{0.2,20/600}=(458/141)MPa$], as well as endurance (fatigue) limit at room temperature and stress ratio of R = -1 : (${\sigma}_{f,20,R=-1}=285.1MPa$).

Corrosion and Mechanical characteristics for 9Cr-1MoVNb Steel under SO2 gas environment (SO2 가스 환경 하에서 9Cr 템퍼드-마르텐사이트강의 부식 및 기계적 특성)

  • Jeong, Gwang-Hu;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.109-109
    • /
    • 2018
  • Cr-Mo 합금강은 고온 환경 하에서 높은 크리이프 강도와 우수한 내식성 때문에 발전설비, 석유 화학, 그리고 해양산업과 같은 여러 산업분야에서 널리 사용되고 있다. 특히, Cr-Mo 강의 내식성은 합금 내 Cr 함량에 크게 의존한다. 이는 고온에서 Cr과 O가 화학적 반응을 일으킴에 따라 보호성의 Cr 산화스케일을 형성하기 때문이다. 그러나 화석연료를 사용하는 발전설비의 경우, $SO_2$가 포함된 강한 부식성의 연소 가스가 배출되며, 이에 노출된 금속의 표면에서는 산화와 황화가 동시에 발생한다. 황화스케일은 산화스케일에 비해 매우 빠르게 성장하며, 그 특성이 매우 취약하기 때문에 황화 환경에서 금속의 내식성 및 기계적 물성치는 보다 크게 저하된다. 따라서 본 연구에서는 화력 발전소의 증기발생용 튜브 재료인 9Cr-1MoVNb 강을 선정하였으며, $SO_2$ 가스 환경 하에서의 부식 및 기계적 물성치 저하 특성을 평가하고자 하였다. 본 연구에서 사용된 9Cr-1MoVNb강의 화학 성분 조성은 0.1 C, 0.38 Si, 0.46 Mn, 0.25 Ni, 8.38 Cr, 0.93 Mo, 0.18 V, 0.09 Nb, 그리고 나머지는 Fe이다. 부식시험은 가공된 미소시험편과 인장시험편을 전기열처리로에 장입한 후, $650^{\circ}C$에서 $N_2+O_2+O_2+SO_2$ 조성의 가스를 분당 50 CC로 흘려주었다. 제작된 시험편에 대한 부식거동은 무게 증가량, optical microscope, scanning electron microsope, 그리고 energy dispersive x-ray spectrum을 통해 평가하였다. 그리고 기계적 물성치 평가를 위한 인장시험은 분당 2mm 변위제어를 통해 실시하였다. 그 결과, 9Cr-1MoVNb 강은 $SO_2$ 가스 환경 하에서 비 보호적인 Fe-풍부상의 산화 스케일층이 두껍게 형성됨에 따라 열악한 내식성을 나타냈다. 그에 따라 기계적 물성치는 저하되는 경향을 나타내었다.

  • PDF

A COMPARATIVE STUDY ON PHYSICAL PROPERTIES OF ORTHODONTIC STAINLESS STEEL WIRES (교정용 스테인리스강선재의 물리적 성질에 관한 비교연구)

  • Kwon, Oh-Won;Sohn, Byung-Hwn
    • The korean journal of orthodontics
    • /
    • v.15 no.2
    • /
    • pp.163-174
    • /
    • 1985
  • The requirements of orthodontic wire should include chemical stability, non-discoloration and non-corrosion in oral environment. Ability to be soldered, ease of fabrication and elasticity should be also considered. The purpose of this study was to compare and analyze the physical properties of Tru-chrome wire and manufactured E.S.S. (Experimental Stainless Steel) wire similar to Tru-chrome. The results were as follows: 1. Tru-chrome wire and E.S.S. wire were SUS 304 which was 18 Cr-8Ni austenite stainless steel. There was not significant difference in each composition between two wires. 2. There were not significant differences in ultimate tensile strength, yield strength, elongation and modulus of elasticity between Tru-chrome and E.S.S. wires. 3. There was not significant difference between flexuree modulus of elasticity of Tru-chrome and E.S.S. wires. 4. Micro-hardness value of E.S.S. wire was more than that of Tru-chrome wire and they were softened significantly by solution heat reatment. 5. Micro-structure of Tru-chrome and E.S.S. wires showed fibrous interlocking grains, and an austenite structure after solution heat treatment. 6. There was significant difference between corrosion rate of Tru-chrome and E.S.S. wires.

  • PDF

Weibull Statistical Analysis of Elevated Temperature Tensile Strength and Creep Rupture Time in Stainless Steels (스테인리스 강의 고온 인장강도와 크리프 파단시간의 와이블 통계 해석)

  • Jung, W.T.;Kim, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • This paper is concerned with the stochastic nature of elevated temperature tensile strength and creep rupture time in 18Cr-8Ni stainless steels. The Weibull statistical analysis using the NRIM data sheet has been performed to investigate the effects of variability of the elevated temperature tensile strength and creep rupture time on the testing temperature. From those investigations, the distributions of temperature tensile strength and creep rupture time were well followed in 2-parameter Weibull. The shape parameter and scale parameter for the Weibull distribution of tensile strength were decreased with increasing the testing temperature. For the creep rupture time, generally, the shape parameter were decreased with increasing the testing temperature.

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

Characteristics of microstructure and mechanical strength of ASTM A387-Gr.91 Steel deteriorated under high-temperature (고온 열화된 ASTM A387-Gr. 91 강의 미세 조직 및 기계적 강도 특성)

  • Jeong, Gwang-Hu;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.111-111
    • /
    • 2018
  • ASTM A387-Gr.91 강은 우수한 고온 강도, 크리이프 저항성 그리고 내산화성 등으로 인해 화력 및 바이오매스 발전 시설과 같은 고온 설비의 구조재료로 널리 사용되고 있다. 고온 환경에서 높은 강도는 탄화물과 탄질화물에 의한 석출강화가 주 요인으로 작용한다. 열처리 과정에서 Mo, Cr, Mn, 그리고 Fe는 구-오스테나이트 및 마르텐사이트 라스 입계에 $M_{23}C_6$ 탄화물로 석출되며, V, Nb, 및 N은 조직 내부에 미세한 MX 탄질화물로 석출된다. 따라서 합금의 고온 강도는 조직 내 석출물의 개수밀도와 크기에 크게 의존한다. 그러나 적용 환경의 특성 상 고온 노출에 따른 2차상 석출 및 조대화의 조직열화 현상이 발생하며, 이는 재료의 강도를 저하시킨다. 본 연구에서는 ASTM A387-Gr.91 강의 미세조직 열화에 따른 강도저하 및 파괴 양상을 고찰하는데 그 목적을 두었다. 본 연구에서 사용된 ASTM A387-Gr.91 강의 화학성분(wt, %)은 0.1 C, 0.38 Si, 0.46 Mn, 0.25 Ni, 8.38 Cr, 0.93 Mo, 0.18 V, 0.09 Nb, 그리고 나머지는 Fe 이다. 조직열화 및 기계적 강도저하 특성을 평가하기 위한 등온열화는 $650^{\circ}C$의 대기 환경에서 최대 1000시간동안 실시하였다. 열화된 시험편의 미세조직 및 탄화물에 대한 분석은 SEM과 EDS를 이용하여 실시하였다. 그리고 기계적 강도 평가는 인장실험과 비커스 경도시험을 통해 실시하였다. 또한 열화 시간에 따른 파단양상의 변화를 관찰하기 위해 인장시험편의 파단면을 SEM과 EDS를 이용하여 분석하였다. 그 결과, 열화에 따른 마르텐사이트 라스의 소실, 탄화물의 조대화, 그리고 2차상 석출의 조직 열화현상이 나타났다. 또한 기계적 강도는 조직 열화에 따라 저하되는 경향을 나타냈다.

  • PDF

Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume (용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도)

  • Choi, Ho-Chun;Kim, Kangyoon;An, Sun-Hee;Park, Wha-Me;Kim, So-Jin;Lee, Young-Ja;Chang, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF