• Title/Summary/Keyword: Steam temperature process

Search Result 259, Processing Time 0.028 seconds

A Study on the Testing of Weather Resistance of Anti-corrosion Wax Covering Agents in the Locomotive at Jangdan Station of Gyeongui Line (경의선장단역증기기관차의 부식방지를 위한 왁스계 피복제 내후성 시험 연구)

  • Song, Won-Joon;Kim, Mi-Hyun;Ahn, Byong-Chan;Jeong, Hee-Don
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.373-381
    • /
    • 2009
  • To preserve steel cultural properties on display outdoors, the surface of these relics is processed with a covering treatment, which is a typical anti-corrosion method. Since the registered cultural heritage of Korea No. 78 Locomotive at Jangdan Station of Gyeongui Line will be treated by preservation process and displayed in the open outdoor area, effective surface covering agents were selected through testing to prevent the corrosion of the locomotive. The mixed wax are based on two types of microcrystalline wax which is one of regular surface covering agents for locomotives and bee‘s wax. For the weather resistance test, 3 types of wax were applied to each specimen of the locomotive and the specimens were tested in the Xenon-Arc Accelerated Weathering Tester for 1000 hours in accordance with the ISO 4892-1981 criteria and the test results were compared. As a result, on the surface of the specimen coated with the bee's wax, a whitening event appears after 400 hours which causes aging, and the specimens coated by the microcrystalline wax showed signs of a whitening event after 800 hours. The moisture contact angle with the microcrystalline wax coating was also less than with the bee's wax. Therefore, it was found that the high temperature microcrystalline wax is the most effective coating agent in terms of weather resistance and moisture blocking capability and the high temperature microcrystalline wax was adopted for coating the surface of the locomotive.

  • PDF

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.

Calculation of non-condensable gases released in a seawater evaporating process (해수 증발과정에서의 기체방출량 계산)

  • Jeong, Kwang-Woon;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.182-190
    • /
    • 2017
  • All liquids contain a small amount of gaseous components and the amount of gases dissolved in a liquid is in accordance with Henry's Law. In a multi-stage thermal-type seawater desalination plant, as the supplied seawater undergoes variations in temperature and pressure in each evaporator, the gases dissolved in the seawater are discharged from the liquid. The discharged gases are carbon dioxide, nitrogen, oxygen, and argon, and these emitted gases are non-condensable. From the viewpoint of convective heat transfer, the evaluation of non-condensable gas released during a vacuum evaporation process is a very important design factor because the non-condensable gases degrade the performance of the cooler. Furthermore, in a thermal-type seawater desalination plant, most evaporators operate under vacuum, which maintained through vacuum system such as a steam ejector or a vacuum pump. Therefore, for the proper design of a vacuum system, estimating the non-condensable gases released from seawater is highly crucial. In the study, non-condensable gases released in a thermal-type seawater desalination plant were calculated quantitatively. The calculation results showed that the NCG releasing rate decreased as the stage comes getting a downstream and it was proportional to the freshwater production rate.

Antifungal Activity of the Quercus Mongolica Extracts Against Botrytis cinerea (신갈나무로부터 유래된 추출물의 Botrytis cinerea 균주에 대한 항균활성)

  • Yeo, Hee Dong;Lee, Hyung Chul;Lim, Bu Kug;Kim, Hee Kyu;Choi, Myung Suk;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.88-101
    • /
    • 2008
  • The aim of this study was to attempt the efficacy of antifungal activity of the wood extracts against Botrytis grey mold. Wood chip derived from Quercus mongolica was obtain from steam explosion process and extracted by hot water and methanol and ethanol. The conidial germination was maximum growth with the application temperature for 20 and $25^{\circ}C$. In pH test, we observed the maximum growth in pH 5.0 and 7.0. Antifungal activity was the best in the hot water extractives against Botrytis cinerea. The separation of the antifungal substances was performed using a silica-gel column (n-hexane : chloroform : ethyl acetate : formic acid = 12 : 17 : 8 : 0.2, v/v/v/v), TLC and UV-Spectrophotometer, and isolated 6 fraction group. The result of antifungal activity in 6 fraction group, fraction group I and fraction group II were the highest antifungal activity against grey mold with the present study. Three peaks in fraction group I and II were detected by HPLC and this compounds were suppose to effective of antifungal activity.

Deterioration and Conservation Treatment of the Three Storied Stone Pagoda in Seoak-ri, Gyeongju (경주 서악리 삼층석탑의 훼손상태 및 보존처리)

  • Lee, Myeong-Seong;Jeong, Min-Ho;Jung, Young-Dong;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.63-74
    • /
    • 2006
  • All rock materials of the three storied stone pagoda in Seoakri were composed of light gray alkali granite with medium grained and developed with small mialolitic cavities. This stone pagoda is preserving almost archetype except the head part because there was repair work already. But, foundation, basement and roof rocks are serious state by microbial invasion such as lichens. Because there are tree and grass that cause direct effect to stone pagoda surrounding. Therefore, conservation treatment executed the primary dry cleaning and secondary wet cleaning treatment. Stone surface is partly not removed well such as lichens which part removed using cleansing device that use high temperature steam. Some treated part concrete and epoxy resin remove and retreatment with mixing talc and alkali granite powder to epoxy resin. Did color matching at mixing process of epoxy resin and fillers to properties with set the feel of a material. Also, drainage ditched to minimize inflow of rainwater fall from slope that is on the east of stone pagoda, tree and grass in stone pagoda surrounding wished to do remove and control occurrence of lichens hereafter minimizing moisture conteats.

  • PDF

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach. (메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.136-152
    • /
    • 2017
  • The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.

Effects of Drying Conditions on the Profile of Volatile Terpenoid and Colour of Schizandra Fruit(Schizandra Chinensis fructus) (건조 조건이 오미자의 휘발성 terpene류 및 색도에 미치는 영향)

  • Kim, Yun-Je;Lee, Young-Guen;Choi, Young-Whan;Kim, Yong-Chul
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1066-1071
    • /
    • 2008
  • Schizandra fruit (Schizandra chinensis fructus) were dried by three processes, $50^{\circ}C$ (50HAD), $70^{\circ}C$ hot air (70HAD) and freeze drying process (FRD). Terpenoid were collected by SDE(Simultaneous Steam Distillation-Extraction) and followed by GC-MSD analysis. Also colour profile of each dried samples were measured by Hunter colorimeter. From fresh schizandra fruit, were detected 15 kinds of monoterpene, 28 kinds of sesquiterpene and 7 kinds of terpene alcohol. Myrcene(56.97 ${\mu}g/g$) and ${\gamma}$-terpinene(58.49 ${\mu}g/g$) were the major monoterpenes, ${\beta}$-elemene(120.16 ${\mu}g/g$), ${\alpha}$-bergamotene (103.45 ${\mu}g/g$), ${\gamma}$-selinene (75.97 ${\mu}g/g$), ${\beta}$-cubebene(66.69 ${\mu}g/g$), aristolene (51.25 ${\mu}g/g$) and ${\alpha}$-ylangene(28.06 ${\mu}g/g$) were the sesquiterpenes, and T-muurolol (96.45 ${\mu}g/g$) and terpinen-4-ol(46.02 ${\mu}g/g$) were the terpene alcohols. The dried samples lost more than half of terpenoid content of fresh schizandra fruit during early stage of drying process, and then the level of terpenoid content was not significantly changed. The content of sesquiterpenes appeared to increase until 6 day of FRD. The amount of residual terpene alcohols contained in schizandra fruit dried by FRD was more than those remained after drying by other processes, and schizandra fruit dried by 70HAD exhibited the least residual terpene alcohols. Brightness parameter $L^{\ast}$ decreased with the rise in the level of drying temperature, to which redness parameter $a^{\ast}$ and yellowness $b^{\ast}$ appeared to be similar.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Effects of Boliing, Steaming, and Chemical Treatment on Solid Wood Bending of Quercus acutissima Carr. and Pinus densiflora S. et. Z. (자비(煮沸), 증자(蒸煮) 및 약제처리(藥劑處理)가 상수리나무와 소나무의 휨가공성(加工性)에 미치는 영향(影響))

  • So, Won-Tek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.19-62
    • /
    • 1985
  • This study was performed to investigate: (i) the bending processing properties of silk worm oak (Quercus acutissima Carr.) and Korean red pine (Pinus densiflora S. et Z.) by boiling and steaming treatments; (ii) the effects of interrelated factors - sapwood and heartwood, annual ring placement, softening temperature and time, moisture content. and wood defects on bending processing properties; (iii) the changing rates of bending radii after release from a tension strap, and (iv) the improving methods of bending process by treatment with chemicals. The size of specimens tested was $15{\times}15{\times}350mm$ for boiling and steaming treatments and $5{\times}10{\times}200mm$ for treatments with chemicals. The specimens were green for boiling treatments and dried to 15 percent for steaming treatments. The specimens for treatments with chemicals were soaked in saturated urea solution, 35 percent formaldehyde solution, 25 percent polyethylene glycol -400 solution, and 25 percent ammonium hydroxide solution for 5 days and immediately followed the bending process, respectively. The results obtained were as follows: 1. The internal temperature of silk worm oak and Korean red pine by boiling and steaming time was raised slowly to $30^{\circ}C$ but rapidly from $30^{\circ}C$ to $80-90^{\circ}C$ and then slowly from $80-90^{\circ}C$ to $100^{\circ}C$. 2. The softening time required to the final temperature was directly proportional to the thickness of specimen. The time required from $25^{\circ}C$ to $100^{\circ}C$ for 15mm-squared specimen was 9.6-11.2 minutes in silk worm oak and 7.6-8.1 minutes in Korean red pine. 3. The moisture content (M.C.) of specimen by steaming time was increased rapidly first 4 minutes in the both species, and moderately from 4 to 20 minutes and then slowly and constantly in silk worm oak, and moderately from 4 to 15 minutes and then slowly and constantly in Korean red pine. The M.C. of 15mm-squared specimen in 50 minutes of steaming was increased to 18.0 percent in the oak and 22.4 percent in the pine from the initial conditioned M.C. of 15 percent The rate of moisture adsorption measured was therefore faster in the pine than in the oak. 4. The mechanical properties of the both species were decreased significantly with the increase of boiling rime. The decrement by the boiling treatment for 60 minutes was measured to 36.6-45.0 percent in compressive strength, 12.5-17.5 percent in tensile strength, 31.6-40.9 percent in modulus of rupture, and 23.3-34.6 percent in modulus of elasticity. 5. The minimum bending radius (M.B.R.) of sapwood and heartwood was 60-80 mm and 90 mm in silk worm oak, and 260 - 300 mm and 280 - 300 mm in Korean red pine, respectively. Therefore, the both species showed better bending processing properties in sapwood than in heartwood. 6. The M.B.R. of edge-grained and flat-grained specimen in suk worm oak was 60-80 mm, but the M.B.R. in Korean red pine was 240-280 mm and 260-360 mm, respectively. Comparing the M.B.R. of edge-grained with flat-grained specimen, in the pine the edge-grained showed better bending processing property than the flat-grained. 7. The bending processing properties of the both species were improved by the rising of softening temperature from $40^{\circ}C$ to $100^{\circ}C$. The minimum softening temperature for bending was $90^{\circ}C$ in silk worm oak and $80^{\circ}C$ in Korean red pine, and the dependency of softening temperature for bending was therefore higher in the oak than in the pine. 8. The bending processing properties of the both species were improved by the increase of softening time as well as temperature, but even after the internal temperature of specimen reaching to the final temperature, somewhat prolonged softening was required to obtain the best plastic conditions. The minimum softening time for bending of 15 mm-squared silk worm oak and Korean red pine specimen was 15 and 10 minutes in the boiling treatment, and 30 and 20 minutes in the steaming treatment, respectively. 9. The optimum M.C. for bending of silk worm oak was 20 percent, and the M.C. above fiber saturation point rather degraded the bending processing property, whereas the optimum M.C. of Korean red pine needed to be above 30 percent. 10. The bending works in the optimum conditions obtained as seen in Table 24 showed that the M.B.R. of silk worm oak and Korean red pine was 80 mm and 240 mm in the boiling treatment, and 50 mm and 280 mm in the steaming treatment, respectively. Therefore, the bending processing property of the oak was better in the steaming than in the boiling treatment, but that of the pine better in the boiling than in the steaming treatment. 11. In the bending without a tension strap, the radio r/t of the minimum bending radius t to the thickness t of silk worm oak and Korean red pine specimen amounted to 16.0 and 21.3 in the boiling treatment, and 17.3 and 24.0 in the steaming treatment, respectively. But in the bending with a tension strap, the r/t of the oak and the pine specimen decreased to 5.3 and 16.0 in t he boiling treatment, and 3.3 and 18.7 in the steaming treatment, respectively. Therefore, the bending processing properties of the both species were significantly improved by the strap. 12. The effect of pin knot on the degradation of bending processing property was very severe in silk worm oak by side, e.g. 90 percent of the oak specimens with pin knot on the concave side were ruptured when bent to a 100 mm radius but only 10 percent of the other specimens with pin knot on the convex side were ruptured. 13. The changing rate in the bending radius of specimen bent to a 300 mm radius after 30 days of exposure to room temperature conditions was measured to 4.0-10.3 percent in the boiling treatment and 13,0-15.0 percent in the steaming treatment. Therefore, the degree of spring back after release was higher in the steaming than in the boiling treatment. And the changing rate of moisture-proofing treated specimen by expoxy resin coating was only -1.0.0 percent. 14. Formaldehyde, 35 percent solution, and 25 percent polyethylene glycol-400 solution found no effect on the plasticization of the both species, but saturated urea solution and 25 percent ammonium hydroxide solution found significant effect in comparison to non-treated specimen. But the effect of the treatment with chemicals alone was inferior to that of the steaming treatment, and the steaming treatment after the treatment with chemicals improved 10-24 percent over the bending processing property of steam-bent specimen. 15. Three plasticity coefficients - load-strain coefficient, strain coefficient, and energy coefficient - were evaluated to be appropriate for the index of bending processing property because the coefficients had highly significant correlation with the bending radius. The fitness of the coefficients as the index was good at load-strain coefficient, energy coefficient, and strain coefficient, in order.

  • PDF