Journal of Advanced Marine Engineering and Technology
/
제16권4호
/
pp.88-101
/
1992
Properties of water and steam are very important for the steam ejector CAD program as a subroutine and design of the Shell & Tube type steam condenser. Present formular programs are based on the Skeleton Table of ASME, and are able to calculate the thermodynamoc properties of water and steam throughout the whole of the region that extend in pressure from 0 to 1000 bar and temperature from 0.01 to 80$0^{\circ}C$. When comparing calculated values for specific volume, enthalpy and entropy with the Skeleton Table 1967 and IAPS Skeleton Table 1984, values fell well within tolerances specified except near the extremes of the range of interest at the critical point and triple point, where deviations were slightly larger.
A steam explosion module, STX, has been developed using the mechanistic steam explosion analysis code, TEXAS-V, in order to estimate the dynamic load with steam explosion by implementing the module to the integrated safety analysis code, MELCOR. One of the difficulties in using mechanistic steam explosion codes is that they do not have any obvious criteria for defining some uncertain parameters such as triggering timing, triggering magnitude, mesh axial length and mesh cross-sectional area. These parameters have been user decision parts in the past. Steam explosion sample calculations and sensitivity studies on uncertain parameters were conducted to investigate those uncertain parameters. The TEXAS-V simulations were summarized in the format of a look-up table and a linear interpolation technique was adopted to calculate the steam explosion load between the data points in the table. The STX-module merged with MELCOR showed the same results as the original MELCOR and additionally it could estimate the steam explosion load in the reactor cavity.
열성능 평가를 위한 수치해석에서는 온도, 압력, 건도, 체적, 엔탈피, 엔트로피 등의 열역학적 성질들의 수치값이 필요하다. 그러나 이러한 성질들을 포함하고 있는 증기표를 그대로 사용할 수 없기 때문에, 효과적으로 모델링하여야 한다. 이러한 관점에서 함수근사 특성을 가진 신경회로망을 하나의 대안으로 검토하였다. 신경 회로망은 포화증기 영역과 과열증기 영역에 대해서 따로 구성하였다. 포화증기 영역에 대해서는 하나의 입력으로 7개의 출력을 얻을 수 있도록 하였으며, 각각 10개와 20개의 노드를 가진 은닉층을 구성 하였다. 과열증기 영역에 대해서는 2개의 입력으로 3개의 출력을 얻을 수 있도록 하였으며, 각각 15개와 25개의 노드를 가진 은닉층을 구성하였다. 제안된 모델은 온도, 엔탈피, 엔트로피의 백분율오차가 대부분 ${\pm}0.005%$, 압력이나 비체적의 백분율오차도 대부분 ${\pm}0.025%$ 범위 내로 수렴시킬 수 있었다. 이 성공적인 결과로부터 증기 표를 함수근사하는데 있어서 신경회로망이 아주 강력한 수단이 될 수 있음을 확인할 수 있었다.
열장치의 열성능 평가를 위한 수치 해석에서는 온도, 압력, 체적, 엔탈피, 엔트로피 등의 열 역학적 성질들의 수치 값이 필요하다. 그러나 열역학적 성질들 사이의 관계를 나타내는 증기표는 그대로 이용할 수는 없기 때문에 모델링하여 사용하여야 한다. 본 연구에서는 스플라인 보간법과 비교함으로써, 습포화증기의 모델링에 신경회로망의 적용 가능성을 검토하였다. 다층신경 회로망을 구성하기 위하여 입력층으로 온도에 대한 1개의 노드, 두 개의 은닉층은 각각 10개와 20개의 노드, 출력층은 포화액과 건포화증기에 대한 비체적, 엔탈피, 엔트로피 등의 6개의 노드로 구성하였으며, 스플라인 보간법은 2차 다항식과 3차 다항식을 사용하였다. 소구간으로 구성 된 스플라인 보간법과 비교하여 신경회로망 모델링은 비슷한 백분율 오차를 보여주었으며, 이 결과로부터 넓은 온도 범위의 증기표 모델링에 신경회로망이 아주 강력한 방법임을 확인하였다.
Steam tables including superheated, saturated and compressed region were simultaneously modeled using the neural networks. Pressure and temperature were used as two inputs for superheated and compressed region. On the other hand Pressure and dryness fraction were two inputs for saturated region. The outputs were specific volume, specific enthalpy and specific entropy. The neural network model were compared with the linear interpolation model in terms of the percentage relative errors. The criterion of judgement was selected with the percentage relative error of 1%. In conclusion the neural networks showed better results than the interpolation method for all data of superheated and compressed region and specific volume of saturated region, but similar for specific enthalpy and entropy of saturated region.
수치해석에서는 온도, 압력, 비체적, 엔탈피, 엔트로피 등의 수치값이 필요하다. 그런데 증기표의 대부분의 열역학적 성질들은 측정된 값이기 때문에 기본적으로 측정 오차를 가지고 있다. 본 연구에서는 압력 기준의 물의 포화 상태에 대해, 난수를 발생시켜 적절한 크기로 조절한 다음 원래의 성질들에 더하여 인위적으로 노이즈가 포함된 데이터를 만들었다. 이 데이터를 신경회로망과 스플라인 보간법으로 함수 근사를 하였다. 해석 결과 신경회로망이 2차 스플라인 보간법보다 훨씬 더 적은 백분율 오차를 보였으며 이로부터 신경회로망이 측정 오차의 영향을 적게 받는 함수 근사에 적절한 방법임을 확인하였다.
A phenomena identification and ranking table(PIRT) was developed for a main steam line break (MSLB) event for the Advanced Power Reactor-1400 (APR-1400). The selectee event was a double-ended steam line break at full power, with the reactor coolant pump running. The developmental panel selected the fuel performance as the primary safety criterion during the ranking process. The plant design data, the results of the APR-1400 safety analysis, and the results of an additional best-estimate analysis by the MARS computer code were used in the development of the PIRT. The period of the transient was composed of three phases: pre-trip, rapid cool-down, and safety injection. Based on the relative importance to the primary evaluation criterion, the ranking of each system, component, and phenomenon/process was performed for each time phase. Finally, the knowledge-level for each important process for certain components was ranked in terms of existing knowledge. The PIRT can be used as a guide for planning cost-effective experimental programs and for code development efforts, especially for the quantification of those processes and/or phenomena that are highly important, but not well understood.
상변화 물질을 취급하는 수치해석에서는 온도, 압력, 체적, 엔탈피, 엔트로피 등의 열역학적 성질들의 수치값이 필요하다. 그러나 열역학적 성질들은 증기표나 선도 등의 형태로 주어지기 때문에 그대로 이용할 수는 없고 모델링하여 사용하여야 한다. 본 연구에서는 2차 스플라인 보간법과 비교함으로써, 과열증기의 모델링에 신경회로망의 적용 가능성을 검토하였다. 신경회로망은 온도와 압력, 2개의 입력에 대하여 비체적, 엔탈피 및 엔트로피, 3개의 출력을 얻을 수 있도록 입력층, 은닉층 및 출력층으로 구성되었다. 스플라인 보간법은 2차 다항식을 사용하였으며, 주어진 압력에 대한 소구간의 온도에 적용하였다. 신경회로망 모델링은 많은 출력 범위에서 2차 스플라인 보간법보다 우수한 백분율 오차를 보였으며, 이 결과로부터 과열증기 모델링에 신경회로망이 아주 강력한 방법임을 확인하였다.
유체의 상변화를 이용하는 냉난방장치 등의 열장치에 대한 열역학적인 성능평가는 열역학적 성질들에 대한 구체적인 수치값을 필요로 한다. 그러나 이러한 열역학적 성질들을 제공하는 증기표를 그대로는 사용할 수 없기 때문에 효과적인 모델링이 필요하다. 본 연구에서는 신경회로망의 함수근사 특성을 이용하여 냉방장치의 매질로 사용되는 냉매(R12)의 포화증기 영역을 모델링하였다. 냉매 R12의 포화증기 영역의 함수근사 해석을 위하여 1개의 노드를 가진 입력층에 대하여 7개의 노드를 가진 출력층을 기본으로 하여, 각각 10개와 20개의 노드를 가진 두 개의 은닉층을 가진 회로망을 구성하였다. 또한 입력이 온도와 압력 두 가지의 경우에 대하여 검토하였다. 제안된 신경회로망을 사용한 결과 엔탈피, 엔트로피의 백분율오차가 대부분 ${\pm}$0.005%, 비체적은 ${\pm}$0.02%, 압력과 온도는 특별한 몇 개를 제외하고는 ${\pm}$0.02% 범위 내로 수렴되었다. 이 결과로부터 냉매를 함수근사하는데 있어서 신경회로망이 아주 강력한 수단이 될 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.