• Title/Summary/Keyword: Steam leakage

Search Result 87, Processing Time 0.025 seconds

Fracture Mechanics Analysis of the Steam Generator Tube after Shot Peeing (숏피닝 증기 발생기 전열관의 파괴역학적 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1180-1185
    • /
    • 2003
  • One of the main degradation of steam generator tubes is stress corrosion cracking induced by residual stress. The resulting damages can cause tube bursting or leakage of the primary water which contained radioactivity. Primary water stress corrosion crack occurs at the location of tube/tubesheet hard rolled transition zone. In order to investigate the effect of shot peening on stress corrosion cracking, stress intensity factors are calculated for the crack which is located in the induced residual stress field.

  • PDF

A Study on ODSCC of OPR 1000 Steam Generator Tube (OPR 1000 증기발생기 전열관의 ODSCC 고찰)

  • Suk, Dong Hwa;Oh, Chang Ha;Lee, Jae Woog
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.16-19
    • /
    • 2010
  • In this study, the axial ODSCC occurrence of domestic OPR 1000 steam generator tube was caused by the tube weakness and the sludge accumulation in the secondary side of steam generator. Inconel 600 HTMA used as tube material is related to most of tube leakage accidents in the world and also these ODSCCs were detected mainly at the 5th TSP(Tube Support Plate) to the 8th TSP of hot leg side. These elevations(5th TSP to 8th TSP) pave the way for the sludge accumulation. As a result of EC(Eddy Current) Bobbin and RPC data analysis, ODSCCs were occurred at contact points of tube and tube support plate. The more accumulated sludge, the higher occurrence frequency of ODSCC.

  • PDF

Rotordynamic Analysis for Stepped-Labyrinth Gas Seals Using Moodys Friction-Factor Model

  • Ha, Tae-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1217-1225
    • /
    • 2001
  • The governing equations are derived for the analysis of a stepped labyrinth gas seal generally used in high performance compressors, gas turbines, and steam turbines. The bulk-flow is assumed for a single cavity control volume set up in a stepped labyrinth cavity and the flow is assumed to be completely turbulent in the circumferential direction. The Moodys wall-friction-factor model is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the stepped labyrinth gas seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The resulting leakage and rotordynamic characteristics of the stepped labyrinth gas seal are presented and compared with Scharrers theoretical analysis using Blasius wall-friction-factor model. The present analysis shows a good qualitative agreement of leakage characteristics with Scharrers analysis, but underpredicts by about 20%. For the rotordynamic coefficients, the present analysis generally yields smaller predictied values compared with Scharrers analysis.

  • PDF

Study on Leak Rate of SCC Degraded Alloy 600 Tubings of PWRs

  • Hwang, Seong Sik;Kim, Joung Soo;Kasza, Ken E.;Park, Jangyul
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.233-239
    • /
    • 2004
  • Primary water stress corrosion cracking of steam generator tubings occur on many tubes in pressurized water reactors(PWRs), and they are repaired using sleeves or plugs. In order to develop proper repair criteria, it is necessary to know the leak behavior of the tubes, which have stress corrosion cracks. Crack development tests were carried out on the tubes at room temperature, and leak rate and burst pressure were measured on the degraded tubes at room temperature and a high temperature. No leakage was detected on the tubes where 100 % through wall crack developed, at 1560 psi, which is an operating pressure difference of pressurized water reactors(PWRs). In some tests, leak rates of the tubes increased with time at a constant internal water pressure. A test tube showed a very small amount of leakage at 2700 psi in a high temperature pressure test at $282^{\circ}C$, but it disappeared after the pressure increased slightly. Even cracks are 100 % through wall, they need to open in order to reach a certain amount of leak rate at the operating pressure difference.

A Clustering-Based Fault Detection Method for Steam Boiler Tube in Thermal Power Plant

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.848-859
    • /
    • 2016
  • System failures in thermal power plants (TPPs) can lead to serious losses because the equipment is operated under very high pressure and temperature. Therefore, it is indispensable for alarm systems to inform field workers in advance of any abnormal operating conditions in the equipment. In this paper, we propose a clustering-based fault detection method for steam boiler tubes in TPPs. For data clustering, k-means algorithm is employed and the number of clusters are systematically determined by slope statistic. In the clustering-based method, it is assumed that normal data samples are close to the centers of clusters and those of abnormal are far from the centers. After partitioning training samples collected from normal target systems, fault scores (FSs) are assigned to unseen samples according to the distances between the samples and their closest cluster centroids. Alarm signals are generated if the FSs exceed predefined threshold values. The validity of exponentially weighted moving average to reduce false alarms is also investigated. To verify the performance, the proposed method is applied to failure cases due to boiler tube leakage. The experiment results show that the proposed method can detect the abnormal conditions of the target system successfully.

Steam Leak Detection Method in a Pipeline Using Histogram Analysis (히스토그램 분석을 이용한 배관 증기누설 검출 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Chae, Gyung-Sun;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.307-313
    • /
    • 2015
  • Leak detection in a pipeline usually involves acoustic emission sensors such as contact type sensors. These contact type sensors pose difficulties for installation and cannot operate in areas having high temperature and radiation. Therefore, recently, many researchers have studied the leak detection phenomenon by using a camera. Leak detection by using a camera has the advantages of long distance monitoring and wide area surveillance. However, the conventional leak detection method by using difference images often mistakes the vibration of a structure for a leak. In this paper, we propose a method for steam leakage detection by using the moving average of difference images and histogram analysis. The proposed method can separate the leakage and the vibration of a structure. The working performance of the proposed method is verified by comparing with experimental results.

Code Analysis of Effect of PHTS Pump Sealing Leakage during Station Blackout at PHWR Plants (중수로 원전 교류전원 완전상실 사고 시 일차측 열수송 펌프 밀봉 누설 영향에 대한 코드 분석)

  • YU, Seon Oh;CHO, Min Ki;LEE, Kyung Won;BAEK, Kyung Lok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This study aims to develop and advance the evaluation technology for assessing PHWR safety. For this purpose, the complete loss of AC power or station blackout (SBO) was selected as a target accident scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes the main features of the primary heat transport system with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was achieved successfully by running the present model to check out the stable convergence of the key parameters. Subsequently, through the SBO transient analyses two cases with and without the coolant leakage via the PHTS pumps were simulated and the behaviors of the major parameters were compared. The sensitivity analysis on the amount of the coolant leakage by varying its flow area was also performed to investigate the effect on the system responses. It is expected that the results of the present study will contribute to upgrading the evaluation technology of the detailed thermal hydraulic analysis on the SBO transient of the operating PHWRs.

Dynamic Boric Acid Corrosion of Low Alloy Steel for Reactor Pressure Vessel of PWR using Mockup Test (가압형 경수로 압력용기 재료인 저합금강의 동적 붕산 부식 실증 연구)

  • Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • This work is concerned with an evaluation of dynamic boric acid corrosion (BAC) of low alloy steel for reactor pressure vessel of a pressurized water reactor (PWR). Mockup test method was newly established to investigate dynamic BAC of the low alloy steel under various conditions simulating a primary water leakage incident. The average corrosion rate was measured from the weight loss of the low alloy steel specimen, and the maximum corrosion rate was obtained by the surface profilometry after the mockup test. The corrosion rates increased with the rise of the leakage rate of the primary water containing boric acid, and the presence of oxygen dissolved in the primary water also accelerated the corrosion. From the specimen surface analysis, it was found that typical flow-accelerated corrosion and jet-impingement occurred under two-phase fluid of water droplet and steam environment. The maximum corrosion rate was determined as 5.97 mm/year at the leakage rate of 20 cc/min of the primary water with a saturated content of oxygen within the range of experimental condition of this work.

Case History for Reduction of Shaft Vibration in a Steam Turbine

  • Kim, In Chul;Kim, Seung Bong;Jung, Jae Won;Kim, Seung Min
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.315-321
    • /
    • 2001
  • The shaft system of turbine is composed of rotating shaft, blades, bearings which support the shaft, packing seal which prevent the leakage of steam, and couplings which connect the shaft. Shaft system component failure, incorrect assemblage or deflection by unexpected forces causes vibration problem. And every turbine has its own characteristics in dynamic response. In this paper we propose the three-bearing supported type rotor which is real equipment and being operated this time as commercial operation. From 1996 it has a high vibration problem and there are many kinds of trial to solve this problem. In resent outage we performed a special diagnosis and carried out appropriate work. We would like to introduce and explain about this case history.

  • PDF