• 제목/요약/키워드: Steam Turbine-Generator

검색결과 115건 처리시간 0.034초

대용량 발전소 재열재생 증기터빈 제어알고리즘에 관한 고찰 (A Study on Turbine Control Algorithms for Large Steam Turbine in a Power Plant)

  • 최인규;정창기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1665-1666
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Therefore after the steam turbine reaches its rated speed and the generator gets into parallel operation with power grid, the electrical power can be increased by turbine controller or governor. The first governor was invented by James Watts for the steam engine to be maintained at a constant speed. The first governor by him was mechanical type with fly balls. The electrical type governor was created due to the progress of electronic devices such as operational amplifiers or integrated circuits. and Today digital electronic type of governor is being widely used in most prime movers.

  • PDF

원자력발전소 증기터빈 발전기의 부하차단 모의시험 (A simulation test of lone rejection for steam turbine generator in nuclear power plant)

  • 최인규;정태원;이기성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2301-2303
    • /
    • 2003
  • A steam turnine in thermal/nuclear power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy. After synchronization in parallel with the power system, generator output increases according as the governor, that is the controller, increases steam flow into turbine. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is to limit the speed to its overspeed trip setpoint by stopping the steam flow as soon as possible, the test of which is called load rejection test. It is introduced in this paper for a simulation test of generator load rejection to be implemented on the turbine governor in a 600MW nuclear power plant before its startup.

  • PDF

화력발전소 터빈 보조기기 제어 관한 고찰 (A Study on Turbine Auxiliary Devices in a Thermal Power Plant)

  • 정창기;최인규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1667-1668
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Turbine auxiliary devices such as condenser, deaerator, feed water heater, gland steam condenser, pump recirculation equipment, feed water pump, and so on should be operated well so that the steam turbine exert its maximum efficiency. There are many control loop such as hot well level and condenser recirculation, deaerator level, pegging steam pressure, feed water heater level, feed water pump recirculation. In this paper condenser level control and deaerator level control are going to be described.

  • PDF

증기터빈$\cdot$발전기축계의 지진응답해석(제 1 보, 로터$\cdot$베어링시스템만을 고려한 경우) (Seismic Response Analysis of Steam Turbine-Generator Rotor System(1st Report, In case of rotor-bearing system only))

  • 양보석;김용한
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.554-564
    • /
    • 1999
  • This paper presents the analytical method to evaluate the seismic responses on steam turbine-generator rotor system. Deterministic analytical methods, such as response spectrum approach, modal superposition method and direct integration method, are used to calculate the seismic response. The computer software is also developed based on the methods then can be applied to estimate the seismic safety of turbine-generator rotor system for power plants. Numerical example of a steam turbine-generator rotor system of 1007MW nuclear power plant is presented. The aseismatic performance are checked by comparing maximum seismic deflection at bearing positions with bearing clearance.

  • PDF

증기터빈의 기동조건과 성능개선이 터빈의 진동에 미치는 영향 (Effect on Vibration of Start-up Condition and Retrofit of Steam Turbines)

  • 이혁순;정혁진;송우석
    • 한국압력기기공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.1-7
    • /
    • 2011
  • The analysis shows that the vibration is one of the main reasons of turbine failure. Especially, the problems caused by vibration occur right after retrofit of the turbine-generator and restarting the turbine. Through the case study of high vibration caused by after the turbine trip and restart, turbine vibration was identified to be influenced by startup condition. Turbine startup at high casing temperature right after unscheduled turbine trip cause radial expansion in rotor by contraction in axial direction, while casing continues to contract by steam flowing into casing. Consequently, gap between rotor and casing decrease until to metal contact to cause high vibration. Through the case study of high vibration of turbine-generator system after generator retrofit, it was identified that generator replacement could cause high vibration in turbine-generator system if the influence of generator replacement on entire system was not considered properly. To prevent startup delay caused by high vibration, it is important to keep the gaps at the design standard and start the turbine after thermal equilibrium.

삼중압 열회수 증기발생기와 중기터빈 시스템의 열설계 해석 (Thermal Design Analysis of Triple-Pressure Heat Recovery Steam Generator and Steam Turbine Systems)

  • 김동섭;이봉렬;노승탁;신흥태;전용준
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.507-514
    • /
    • 2002
  • A computation routine, capable of performing thermal design analysis of the triple-pressure bottoming system (heat recovery steam generator and steam turbine) of combined cycle power plants, is developed. It is based on thermal analysis of the heat recovery steam generator and estimation of its size and steam turbine power. It can be applied to various parametric analyses including optimized design calculation. This paper presents analysis results for the effects on the design performance of heat exchanger arrangements at intermediate and high temperature parts as well as steam pressures. Also examined is the effect of steam sources for deaeration on design performance.

680MW 원자력발전소 증기터빈 발전기의 부하차단 모의시험 (A Simulation Test of Load Rejection for Steam Turbine Generator in a 680MW Nuclear Power Plant)

  • 최인규;정창기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1605-1606
    • /
    • 2007
  • An electrical generator in power plant is driven and maintained its speed at rated by steam turbine. By the way, after synchronization in parallel with the power system, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is to limit the speed to its overspeed trip set point by stopping the steam flow as soon as possible, the test of which is called load rejection test. It is introduced in this paper for a field simulation test of generator load rejection to be implemented on the turbine governor in a 680MW nuclear power plant before its startup.

  • PDF

북제주 화력 발전소 스팀 터빈 발전기용 인텔리전트 디지털 조속기 개발 (Development of Intelligent Digital Governor System for Steam Turbine Generator in Buk-Cheju Thermal Power Plant)

  • 전일영;하달규;신명철;김윤식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.608-613
    • /
    • 1999
  • This thesis aims at developing of a digita governor system for the steam turbine generator on the Buk-Cheju Thermal Power Plant of KEPCO. The steam turbine generator of the Buk-Cheju Thermal Power Plant is modelled. As a hardware platform, a triple modular system which is fitted 32-bit microprocessor of Motorola company to perform the digital governor system is used. The parameters of the PID controller algorithm in the speed control block is tuned on the basis of the estimated model.

  • PDF

구분모드합성법을 이용한 증기터빈$\cdot$발전기축계의 진동해석 (Vibration Analysis of Steam Turbine-Generator Rotor System Using Component Mode Synthesis Method)

  • 양보석;김용한;최병근;이현
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.401-408
    • /
    • 1999
  • A method is presented for the vibration analysis of steam turbine-generator rotor system based on the component mode synthesis method. The motion of each component of the system is described by superposing constraint mode associated with boundary coordinates and constrained normal modes associated with internal coordinates. This method using real fixed-interface modes allows for significant reduction in system model size while retaining the essential dynamic characteristics of the lower modes. The capability of this method is demonstrated in the natural frequency and unbalance response analysis of the steam turbine-generator rotor system in which the dynamics of the pedestal is considered. The results by the present method are compared with finite element method and trnasfer matrix method in terms of the accuracy and computing time.

  • PDF

Load Test Simulator Development for Steam Turbine-Generator System of Nuclear Power Plant

  • Jeong, Chang-Ki;Kim, Jong-An;Kim, Byung-Chul;Choi, In-Kyu;Woo, Joo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1384-1386
    • /
    • 2005
  • This paper focuses on development of load test simulator of a steam turbine-generator in a nuclear power plant. When load is taken off from electrical power network, it is very difficult to effectively control the steam flow to turbine of the nuclear turbine-generator, because of disturbances, such as electrical load and network unbalance on electrical network. Up to the present time, the conventional control system has been used for the load control on nuclear steam generator, owing to the easy control algorithms and the advantage which have been proven on the nuclear power plant. However, since there are problems with stability control during low power and start-up, only a highly experienced operator can operate during those procedures. Also, a great deal of time and an expensive simulator is needed for the training of an operator. The KEPRI is developed simulator for 600MW nuclear power plant to take a test of generator load rejection, throttle valve, and turbine load control. Total load test is implemented before start up.

  • PDF