• Title/Summary/Keyword: Steam Flow Rate

Search Result 252, Processing Time 0.027 seconds

Effect of the Steam Flow Rate on Syngas Productivity in IGCC Gasifier for a Power Generation (IGCC 발전용 가스화기에서 증기 주입량이 합성가스 생산량에 미치는 영향)

  • Keum, Kyung-Nam;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.15 no.3
    • /
    • pp.29-34
    • /
    • 2019
  • In the study, the effect of steam injection on syngas productivity was investigated under the constant operating conditions of gasifier oxygen load while the coal feed was fixed and the steam injection flow rate is changed in Taean IGCC plant. The maximum syngas average productivity was found to be at 80 % and 90 % of gasifier oxygen loads with the steam injection flow rate of 0.14 kg/s and 0.15 kg/s per coal burner. Through this study, the syngas productivity was changed by adjusting the steam injection amount and as the steam injection flow rate increased, the syngas productivity increased and then decreased again. The syngas productivity can be increased only by steam injection without supplying additional coal and it is considered that the syngas productivity has different characteristics depending on coal type. Thus it is recommended to operate the gasifier using Carbo-One coal with the steam injection flow rate of about 0.14 kg/s per coal burner when the gasifier oxygen load is 80 % ~ 90 %.

Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation (막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포)

  • 강희찬;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

Feedwater Flow Rate Evaluation of Nuclear Power Plants Using Wavelet Analysis and Artificial Neural Networks (웨이블릿 해석과 인공 신경회로망을 이용한 원자력발전소의 급수유량 평가)

  • Yu, Sung-Sik;Seo, Jong-Tae;Park, Jong-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.346-353
    • /
    • 2002
  • The steam generator feedwater flow rate in a nuclear power plant was estimated by means of artificial neural networks with the wavelet analysis for enhanced information extraction. The fouling of venturi meters, used for steam generator feedwater flow rate in pressurized water reactors, may result in unnecessary plant power derating. The backpropagation network was used to generate models of signals for a pressurized water reactor. Multiple-input single-output heteroassociative networks were used for evaluating the feedwater flow rate as a function of a set of related variables. The wavelet was used as a low pass filter eliminating the noise from the raw signals. The results have shown that possible fouling of venturi can be detected by neural networks, and the feedwater flow rate can be predicted as an alternative to existing methods. The research has also indicated that the decomposition of signals by wavelet transform is a powerful approach to signal analysis for denoising.

  • PDF

Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane

  • Kim, Young Jin;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.325-330
    • /
    • 2015
  • Performance of solid oxide fuel cells (SOFCs), in comparison with that under hydrogen fuel, were investigated under direct internal reforming conditions. Anode supported cells were fabricated with an Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode for the present work. Measurements of I-V curves and impedance were conducted with S/C (steam to carbon) ratio of ~ 2 at $800^{\circ}C$. The outlet gas was analyzed using gas chromatography under open circuit condition; the methane conversion rate was calculated and found to be ~ 90% in the case of low flow rate of methane and steam. Power density values were comparable for both cases (hydrogen fuel and internal steam reforming of methane), and in the latter case the cell performance was improved, with a decrease in the flow rate of methane with steam, because of the higher conversion rate. The present work indicates that the short-term performance of SOFCs with conventional Ni+YSZ anodes, in comparison with that under hydrogen fuel, is acceptable under internal reforming condition with the optimized fuel flow rate and S/C ratio.

Numerical investigation of the large over-reading of Venturi flow rate in ARE of nuclear power plant

  • Wang, Hong;Zhu, Zhimao;Zhang, Miao;Han, Jinlong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Venturi meter is frequently used in feed water flow control system in a nuclear power plant. Its accurate measurement plays a vital role in the safe operation of the plant. This paper firstly investigates the influence of the length of each section of pipeline, the throat inner diameter of Venturi and the flow characteristics in a single-phase flow on the accuracy of Venturi measurement by numerical calculation. Then the flow and the accuracy are discussed in a multi-phase flow. Numerical results show that the geometrical parameters and the characteristics of complex turbulent flow in the single-phase flow have little impact on the accuracy of Venturi flow rate measurement. In the multi-phase flow, the calculated flow rate of Venturi deviated from the actual flow rate and this deviation value is closely related to the amount of steam in the pipeline and increases sharply with the increase of the amount of steam. The over-reading of Venturi flow rate is present.

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

Mitigation of Flooding under Externally Imposed Oscillatory Gas Flow

  • Lee, Jae-Young;Chang, Jen-Shih
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.475-479
    • /
    • 1995
  • During the hypothetical loss of coolant accident in the nuclear power plant the emergency core cooling water could not penetrate to the reactor core when the steam flow rate from the reactor core exceeds CCFL (Countercurrent flow limitation). The CCFL generated by earlier investigators are developed under the steady gas flow. However the flow instability in the reactor loop could generate oscillatory steam flow, hence their applicability under oscillating flow should be investigated. In this work, an experimental investigation of countercurrent flow in the vertical flow channel has been conducted under oscillatory gas flow. Pulsation of gas under oscillatory flow disturbs the flow pattern significantly and prevents flooding (CCFL) when its minimum value is less than the threshold gas flow rate value.

  • PDF

Development of Three-dimensional Thermo-fluid Numerical Model for Steam Drum of a Basic Oxygen Furnace (순산소 전로의 증기드럼 내의 3차원 열 유동 해석모델 개발)

  • Jeong, Soo-Jin;Moon, Seong-Joon;Jang, Won-Joon;Kho, Suntak;Kwak, Hotaek
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.479-486
    • /
    • 2016
  • The efficient steam drum should be required to reduce carbon oxide emissions and heat recovery in oxygen converter hood system. However, steam generation is limited to the time of the oxygen blowing period, which is intermittent or cyclical in operation of steel-making process. Thus, steam drum should be optimized for an effective steam generation during the oxygen blowing portion of the converter cycle. In this study, a three-dimensional computational fluid dynamics (CFD) model has been developed to describe the impacts of changing various operating conditions and geometric shape on thermo-fluid characteristics and performance of the steam drum. This model encompasses not only fluid flow and heat transfer but also evaporation and condensation at the interfacial surface in the steam drum by using VOF (Volume of Fluid) method. To validate the prediction performance of this model, comparison of the steam flow rate between numerical and experimental result has been performed, resulting in the accuracy of the relative error by less than 3.2%.

Energy and Exergy Analysis of a Steam Turbine Cogeneration System (증기터빈 열병합 시스템에 대한 에너지 및 엑서지 해석)

  • Cho, Sung-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1397-1405
    • /
    • 2009
  • In recent decades, exergy analysis has been holding spotlight as a useful tool in the design, assessment, optimization, and improvement of energy system. This paper presents the results of the energy and exergy analysis of a steam turbine cogeneration system for industrial complex using two efficiency concepts of conventional one and exergetic one. In order to obtain the destroyed exergy of each component, mathematical analysis is conducted by using exergy balance and the second law of thermodynamics, according as the parameters are changed, such as the ratio of returned process steam, process steam supplied, temperature and pressure of boiler and power. The computer program developed in this study can determine the efficiencies and exergy destroyed at each component of cogeneration system. As a result of this study, a component having the largest destroyed exergy was boiler. And closed and opened feedwater heater had the lowest one. The affects to the cogeneration system due to the variation of process steam flow and return rate of condensed water is shown that the total electric power efficiency(${\eta}_E$) is decreased as increasing the return rate of condensed water under constant process steam flow. As the boiler pressure is increased for the more production of electricity, the efficiency of cogeneration system was decreased.

  • PDF

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.