• Title/Summary/Keyword: Steam Flow Rate

Search Result 252, Processing Time 0.023 seconds

Tube Erosion Rate of Water Wall in a Commercial Circulating Fluidized Bed Combustor (상용 순환 유동층 연소로 수관벽 전열관 마모속도)

  • Kim, Tae-Woo;Choi, Jeong-Hoo;Shun, Do-Won;Son, Jae-Ek;Jung, Bongjin;Kim, Soo-Sup;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.525-530
    • /
    • 2005
  • The erosion rate of water wall tube has been measured and discussed in a commercial circulating fluidized bed combustor (200 ton steam/hr, $4.97{\times}9.90{\times}28.98m\;height$). Tube thickness was measured with ultrasonic method. Severe tube erosion rate was observed in the splash region on all waterwalls including wingwalls. The tube erosion rate increased after an initial decrease as height from the distributor increased. The difference of erosion rate among wing walls was found due to unbalanced distribution of gas and solid flow rates. The erosion rate of the wing wall increased as location of the wing wall became closer to the center of combustor crosssection.

Development of a Gliding Arc Plasma Reforming System to Produce Hydrogen Form Biogas (바이오가스 개질을 위한 글라이딩 아크 플라즈마 개질 시스템 개발)

  • Kim, Seong Cheon;Yang, Yoon Cheol;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.423-429
    • /
    • 2009
  • The purpose of this study is to investigate the optimal condition for the hydrogen-rich gas production and the CO removal by reforming of gliding arc plasma reforming system using biogas. The parametric screening studies were carried out according to changes of steam feed amount, catalyst bed temperature in water gas reactor and catalyst bed temperature, input air flow rate in preferential oxidation reactor. The standard condition is as follows. The steam/carbon ratio, catalyst bed temperature, total gas flow rate, input electric power and biogas composition rate ($CH_4$ : $CO_2$) were fixed 3, $700^{\circ}C$, 16 L/min, 2.4 kW and 6 : 4, respectively. The results are as follow, HTS optimum operating conditions were S/C ratio of 3 and reactor temperature of $500^{\circ}C$. LTS were S/C ratio of 2.9 and temperature of $300^{\circ}C$. Also, PROX I optimum conditions were input air flow rate of 300 mL/min and reactor temperature of $190^{\circ}C$. PROX II were 200 mL/min and $190^{\circ}C$ respectively. After having passed through each reactor, the results were as follows: 55% of $H_{2}$ yield, 0% of CO selectivity, 99% of $CH_4$ conversion rate, 27% of $CO_2$ conversion rate, respectively.

Effect of Metal Oxide Additives on Hydrogen Production in the Steam-Iron Process (철-수증기 반응에 의한 수소생성에 미치는 금속산화물의 첨가효과)

  • Lee, Dae-Haeng;Moon, Hee;Park, Heung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1991
  • The production of hydrogen from steam by reduced iron with additives such as CuO, $In_2O_3$, $MoO_3$ and $WO_3$ has been kinetically investigated. It was shown that all additives have a promoting effect on reaction activity in the order of $$MoO_3{\gg}In_2O_3{\sim_=}WO_3{\sim_=}CuO$$. The shrinking core model was applied to predict the complete conversion time and the results were quite comparable with experimental values. The reaction was carried out in a fixed flow reactor packed with reduced iron with 1 wt % of additives under the conditions, $600-750^{\circ}C$, Ar flow rate of 1 L/min and steam partial pressure of 0.085 atm. The apparent activation energies were 14.2, 20.9, 21.3, 22.4 and 27.9 kJ/mol with $MoO_3$, $In_2O_3$, $WO_3$, CuO and without additive, respectively.

  • PDF

Thermo-fluid Dynamic and Missile-motion Performance Analysis of Gas-Steam Launch System Utilizing Multiphase Flow Model and Dynamic Grid System (다상 유동모델과 동적 격자계를 활용한 가스-스팀 발사체계의 열유동과 탄의 운동성능 해석)

  • Kim, Hyun Muk;Bae, Seong Hun;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.48-59
    • /
    • 2017
  • In this study, an analysis of the thermo-fluid dynamic and missile-motion performance was carried out through a numerical simulation inside the missile canister. Calculation was made in an analytical volume using dynamic grid and evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF (Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.

Shell Wall Thinning and Mitigation Plan and Design Modification of a Feedwater Heater Impingement Baffle (급수가열기 동체 감육 현상과 완화 방안 및 충격판 설계개선)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Park, Sang-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.55-63
    • /
    • 2010
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feedwater heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare degree of shell wall thinning mitigation rate to squared type with mitigation rate of other type baffle plate, three different types of impingement baffle plate-squared, curved and mitigating type-applied inside the shell. With these comparison data, this paper describes operation of experiments and numerical analysis which is composed similar condition with real feed water heater. And flow visualization is operated for verification of experiments and numerical analysis. In conclusion, this study shows that mitigating type baffle plate is more effective than other baffle plate about prevention of pressure concentration and pressure value decrease.

The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump

  • Yun, Long;Dezhong, Wang;Junlian, Yin;Youlin, Cai;Chao, Feng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The problem of non-uniform inflow exists in many practical engineering applications, such as the elbow suction pipe of waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the $k-{\varepsilon}$ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency $f_R$, the corresponding amplitude of channel head are higher than the straight pipe at $1.0{\Phi}_d$ and $1.2{\Phi}_d$ flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at $0.8{\Phi}_d$ flow rates.

A Study on the Optimization of Ventilation Fan Position and Flow Rate for a Turbine Building of a Power Plant (화력발전소 터빈 본관의 환풍기 위치 및 용량 최적화에 관한 연구)

  • Kim, T.K.;Ha, J.S.;Park, C.H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.86-93
    • /
    • 2016
  • The existence of high temperature equipment such as steam pipe, deaerator, steam storage tanks and main steam stop valves makes relatively higher workplace temperature in a power plant of the turbine building. In order to cool down the air temperature in the turbine building, the outside air flow with lower temperature passes through the window and the hotter air in the building is extracted to the outside by installing the ventilation fan on the roof. Nevertheless, higher temperature regions near the high temperature equipment still exist in the turbine building and additional fans for the temperature reduction in the higher temperature region should be examined for the optimal location and mass flow rate. The purpose of the present study is to suggest the optimized location and capacity of the additional ventilation fans for a comfortable working environment. From the present study, it has been elucidated that the additional ventilation fans might be located near the high temperature deaerator and it could reduce the mean temperature in the turbine building by $3.0^{\circ}C$ and the temperature near the deaerator could be reduced by $4.2^{\circ}C$.

Experimental Study on Performance of MEMS(Multi-Effect-Multi-Stage) Distiller for Solar Thermal Desalination (태양열 해수담수화를 위한 증발식 MEMS(Multi-Effect-Multi-Stage)담수기 성능 실험 연구)

  • Joo, Hong-Jin;Jeon, Yong-Han;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • In this study, we have carried out development and performance evaluation of optimized MEMS(Multi-Effect-Multi-Stage) fresh water generator with $7m^2/day$ for solar thermal desalination system. The developed MEMS was composed of high temperature part and low temperature part. This arrangement has the advantage of increasing the availability of solar thermal energy. The MEMS consists of 2 steam generators, 5 evaporators, and 1 condenser. Tubes of heat exchanger used for steam generators, evaporators and condenser were manufactured by corrugated tubes. The performance of the MEMS was tested through in-door experiments, using an electric heater as heat source. The experimental conditions for each parameters were $20^{\circ}C$ for sea water inlet temperature to condenser, $8.16m^2$ /hour sea water inlet volume flow rate, $70^{\circ}C$ for hot water inlet temperature to generator of high temperature part, 3.6 4.8, 6.0 $m^2/hour$ for hot water inlet volume flow rate. As a result, The developed MEMS was required about 85 kW heating source to produce $7m^2/day$ of fresh water. It was analyzed that the performance ratio of MEMS was about 2.6.

Process Modeling of IGCC Power Plant using Open-Equation Modeling Framework (개방형 수식모델링 툴을 이용한 IGCC 플랜트 공정모사)

  • Kim, Simoon;Joo, Yongjin;Kim, Miyeong;Lee, Joongwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.113.1-113.1
    • /
    • 2010
  • IGCC(Integrated Coal Gasification and Combined Cycle) plants can be among the most advanced and environmental systems for electric energy generation from various feed stocks and is becoming more and more popular in new power generation fields. In this work, the performance of IGCC plants employing Shell gasification technology and a GE 7FB gas turbine engine was simulated using IPSEpro open-equation modeling environment for different operating conditions. Performance analyses and comparisons of all operating cases were performed based on the design cases. Discussions were focused on gas composition, syngas production rate and overall performance. The validation of key steady-state performance values calculated from the process models were compared with values from the provided heat and material balances for Shell coal gasification technology. The key values included in the validation included the inlet coal flow rate; the mass flow rate, heating value, and composition of major gas species (CO, H2, CH4, H2O, CO2, H2S, N2, Ar) for the syngas exiting the gasifier island; and the HP and MP steam flows exiting the gasifier island.

  • PDF

Characteristics of Fluidized Bed Type Gasification of Kideco Coal (키데코탄의 유동층 가스화 반응 특성)

  • Bae, Dal-Hee;Jo, Sung-Ho;Shun, Do-Won;Moon, Young-Sub
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.32-39
    • /
    • 2007
  • Coal pyrolysis processes vary with the origin and rank of coal. It is difficult to generalize the characteristics of coal pyrolysis reaction because the process consists of numerous reactions including pyrolysis, gasification, and combustion. To find out the optimum process condition it is necessary to determine the condition fur each coal from the smatter scale experiment. In this study pressurized ($2kg_{f}/cm^{2}$) fluidized bed, low temperature ($735{\sim}831^{\circ}C$) gasification using Kideco coal was performed. The reaction condition and product gas composition were determined from the variables including steam flow rate, coal feed rate and air flow rate. Optimum reaction condition was determined from the concentrations of $H_{2}$, and CO in the product gas. The ratio of air/coal was 4.45 and that of steam/coal was 0.21 respectively. The concentrations of CO and $H_{2}$ decreased with the increase of $CO_{2}$. It is important to control the feed rates of coal and steam because the reaction temperature rapidly increased when the combustion reaction dominates over the gasification reaction. The concentrations of CO and $H_{2}$ were 18%, 17% respectively from the continuous operating condition.