Tube Erosion Rate of Water Wall in a Commercial Circulating Fluidized Bed Combustor

상용 순환 유동층 연소로 수관벽 전열관 마모속도

  • Kim, Tae-Woo (Department of Chemical Engineering, Innovative Environmental Technology Center, Konkuk University) ;
  • Choi, Jeong-Hoo (Department of Chemical Engineering, Innovative Environmental Technology Center, Konkuk University) ;
  • Shun, Do-Won (Korea Institute of Energy Research) ;
  • Son, Jae-Ek (Korea Institute of Energy Research) ;
  • Jung, Bongjin (Department of Environmental Engineering, Suwon University) ;
  • Kim, Soo-Sup (SK Chemical Co.) ;
  • Kim, Sang-Done (Department of Molecular Biology and Chemical Engineering, KAIST)
  • 김태우 (건국대학교 화학공학과, 차세대환경기술센타) ;
  • 최정후 (건국대학교 화학공학과, 차세대환경기술센타) ;
  • 선도원 (한국에너지기술연구원) ;
  • 손재익 (한국에너지기술연구원) ;
  • 정봉진 (수원대학교 환경공학과) ;
  • 김수섭 (SKC(주)) ;
  • 김상돈 (한국과학기술원 생명화학공학과)
  • Received : 2005.02.18
  • Accepted : 2005.04.23
  • Published : 2005.08.31

Abstract

The erosion rate of water wall tube has been measured and discussed in a commercial circulating fluidized bed combustor (200 ton steam/hr, $4.97{\times}9.90{\times}28.98m\;height$). Tube thickness was measured with ultrasonic method. Severe tube erosion rate was observed in the splash region on all waterwalls including wingwalls. The tube erosion rate increased after an initial decrease as height from the distributor increased. The difference of erosion rate among wing walls was found due to unbalanced distribution of gas and solid flow rates. The erosion rate of the wing wall increased as location of the wing wall became closer to the center of combustor crosssection.

상용 순환 유동층 연소로(200 ton steam/hr, $4.97{\times}9.90{\times}28.98m$)의 수관벽에서 전열관의 마모속도를 측정 및 고찰하였다. 전열관의 두께는 초음파 측정방법을 이용하여 측정되었다. Splash 영역에서 윙월을 포함한 모든 수관벽 전열관의 마모속도가 두드러졌다. 전열관의 마모속도는 분배기로부터 높이가 증가함에 따라서 감소한 후 다시 증가하였다. 프리보드 기체출구 부근의 윙월에서는 기체 및 고체흐름의 편향성으로 인한 마모속도의 차이도 나타났다. 윙월의 마모속도는 연소로 단면의 중앙에 위치할수록 크게 나타났다.

Keywords

Acknowledgement

Supported by : 에너지관리공단

References

  1. Stringer, J. and Stallings, J., 'Material Issues in Circulating Fluidized- Bed Combustors,' Proc. of the 11th Int. Conf. on Fluidized Bed Combustion, 589-608(1991)
  2. Seitzinger, D. L., 'Atmospheric Fluidized Bed Combustion Gas Erosion Solution,' Proc. of the 13th Int. Conf. on Fluidized Bed Combustion, 585-595(1995)
  3. Zhao, C., Chang, Z., Jin, H. and Zhang, L., 'Effects of Fluidization Mode Transition on Erosion of Immersed Tubes in Pressureized Fluidized Bed,' Proc. of the 16th Int. Conf. on Fluidized Bed Combustion, FBC01-0181(2001)
  4. Rogers, W. A. and Boyle, E. J., 'Water Pediction in a Fluidized Bed Combustor,' Proc. of the 1993 Int. Conf. on Fluidized Bed Combustion, 811-817(1993)
  5. Lindsley, B. A., Marder, A. R. and Lewnard, J. J., 'The Effect of FBC particle Characteristics on Erosion of a Low Alloy Steel,' Proc. of the 1993 Int. Conf. on Fluidized Bed Combustion, 803- 809(1993)
  6. Ninham, A. J., Entwisle, M. J., Hutchings, I. M. and Little, J. A., 'A Laboratory-Scale Fluidized Bed Rig for High Temperature Tube Wastage Studies,' Proc. of Int. Conf. on Fluidized Bed Combustion, 583-589(1989)
  7. Hou, P. Y., Sum, J. T., Niu, Y. and Stringer, J., 'HCl Effect on In- Bed Tube Wastage in Bubbling Fluidized Bed, a Laboratory Study under Simulated Dense Particle Impact Conditions,' Proc. of the 15th Int. Conf. on Fluidized Bed Combustion, FBC 99- 0137(1999)
  8. Sethi, V. K., Barber, S. A., Sherman, S. K., Gonzalez, R. A., Puentes, E. and Stencel, J. M., 'Wear-Corrosion Synergism in Chlorine-Containing Coal Combustion Environments,' Proc. of the 10th Int. Conf. on Fluidized Bed Combustion, 563-574(1989)
  9. Yamamoto, K., Kajigaya, I., Sonoya, K. and Tsuji, Y., 'Material Selection for the Super-Heater and Re-Heater Tubes on PFBC, Based on the Results of Laboratory Test and Ex-Serviced Materials Survey,' Proc. of the 16th Int. Conf. on Fluidized Bed Combustion, FBC01-0191(2001)
  10. Vincent, R. Q., Canonico, D. A. and Wheeldon, J. M., 'An Evaluation Program for Metal Wastage in Fludized Bed Combustors,' Proc. of the 1989 Int. Conf. on Fluidized Bed Combustion, 927-935(1989)
  11. Holtzer, G. J. and Rademakers, P. L. F., 'Studies on 90 MWth AKZO and 4 MWth TNO FBS Show Excellent Erosion-Corrosion Results,' Proc. of the 1991 Int. Conf. on Fluidized Bed Combustion, 743-753(1991)
  12. Han, K. H., 'Erosion Characteristics of In-Bed Tubes in Bubbling Fluidized Bed Cold Mode Reactor,' Master Dissertation, Chungnam National University, Korea(1995)