• Title/Summary/Keyword: Steady-state operation

Search Result 618, Processing Time 0.025 seconds

Coordination Control of Voltage Between STATCOM and Reactive Power Compensation Devices in Steady-State

  • Park, Ji-Ho;Baek, Young-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.689-697
    • /
    • 2012
  • This paper proposes a new coordinated voltage control scheme between STATCOM (Static Synchronous Compensator) and reactive power compensation devices, such as shunt elements(shunt capacitor and shunt reactor) and ULTC(Under-Load Tap Changer) transformer in a local substation. If STATCOM and reactive power compensators are cooperatively used with well designed control algorithm, the target of the voltage control can be achieved in a suddenly changed power system. Also, keeping reactive power reserve in a STATCOM during steady-state operation is always needed to provide reactive power requirements during emergencies. This paper describes the coordinative voltage control method to keep or control the voltage of power system in an allowable range of steady-state and securing method of momentary reactive power reserve using PSS/E with Python. In the proposed method of this paper, the voltage reference of STATCOM is adjusted to keep the voltage of the most sensitive bus to the change of loads and other reactive power compensators also are settled to supply the reactive power shortage in out range of STATCOM to cope with the change of loads. As the result of simulation, it is possible to keep the load bus voltage in limited range and secure the momentary reactive power reserve in spite of broad load range condition.

Combustion Characteristics of the SOFC Products for SOFC/Gas Turbine Hybrid Power Generation System (SOFC/가스터빈 혼합발전을 위한 SOFC 생성물의 연소특성)

  • Lee, Byeong Jun;Bae, Chul Han
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.44-52
    • /
    • 2014
  • Solid oxide fuel cell(SOFC) makes electric power using hydrogen or reformed from methane and emits high temperature products that contain flammable species like hydrogen, carbon monoxide and methane which varies with operation condition. SOFC/gas turbine integrated system which uses thermal and chemical energy of the discharges is more efficient than SOFC itself. Burning character of the SOFC products will affect the efficiency and stability of the system. Experiments were conducted to know the characteristics of the flame for two typical composition of SOFC products, i.e. start-up and steady state composition. When coflowing air temperature was higher than $600^{\circ}C$, auto-ignitin occurred for both fuels. Though start-up fuel has higher contents of hydrogen, it makes longer flame than steady state composition. It was inferred that the amount of oxidizer necessary to burn makes this phenomenon. Steady state composition fuel was unstable since it contains lots of water. Nozzle that had 6 holes, distance between each hole was 16.7 times of hole diameter, improved the stability of the flame.

Analysis of the Dynamic Characteristics of a Small Regenerative Gas Turbine (소형 재생 가스터빈의 동적 작동특성 해석)

  • Kim, Jae Hwan;Jeon, Yong Joon;Kim, Tong Seop;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.769-777
    • /
    • 1999
  • This paper presents models for the dynamic simulation of a regenerative gas turbine and describes dynamic behaviors of a small regenerative engine. A quasi-steady model is introduced where the inertia of the working fluid is assumed to be negligible compared with the mechanical inertia of the rotating shaft. Based on this quasi-steady model, the transient model for the heat exchanger is employed to simulate the unsteady heat exchange in the recuperator. The effect of the thermal inertia of the recuperator metal on transient behaviors is analyzed by comparing the predicted results of the transient and steady state heat exchanger models. For several load change modes such as sudden increase, decrease and periodic variation, engine dynamic characteristics are investigated by applying a fuel control logic for the constant shaft speed. It is found that the thermal inertia of the recuperator metal has a dominant effect on the whole engine dynamic behavior.

±80kV 60MW HVDC Operational Strategy in Abnormal State (비상상태에서의 제주 ±80kV 60MW HVDC 운전 방안 연구)

  • Yoon, Jong-Su;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.664-668
    • /
    • 2012
  • This paper presents the operation strategy of KEPCO(Korea Electric Power COporation) ${\pm}80kV$ 60MW Bipole HVDC system that will be applied between Guemak C/S(converter station) and Hanlim C/S in Jeju island. Unlike intertie HVDC system, this system is located in AC power grid inside. Therefore, the enhancement of system security related with line flow and bus voltages can be major operation strategy. In this paper, in particular, the optimal operation algorithm in the abnormal(not steady state) power system is presented and simulated.

Load distribution analysis of a sprocket wheel tooth for a low head hydro-turbine power transmission system (저낙차용 수차의 동력전달 스프로켓 휠 이의 하중분포 해석)

  • 강용석;김현수;김현진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1087-1095
    • /
    • 1994
  • Chain drive power transmission system was developed for a low head hydro-turbine which generates power by energy transformation on the turbine blades attached to chains. Also, experimental and theoretical analysis for the sprocket wheel tooth load distribution were performed. The tooth load was measured by the specially designed load sensor. It was found that the tooth load distribution for the steady state operation was in good accordance with the quasi-static state results showing the peak load at the final meshing tooth. The trend of the experimental results agreed with the theoretical results based on the spring model analysis and difference in the magnitude of the maximum tooth load was considered to be the effect of the variable spring constant due to the moving contact point between the roller and sprocket wheel tooth.

Simulation Method for Radio-Frequency Single-Electron Transistor (RF-SET) Operation (고주파 단일전자 트랜지스터 (RF-SET) 동작의 시뮬레이션 방법)

  • Yu Yun Seop;Park Hyun-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.9-14
    • /
    • 2005
  • Simulation method for a pure radio-frequency (rf) mode of reflection-type and a pure rf mode of transmission-type radio-frequency single-electron transistor (RF-SET) operation is introduced. In this method, the solutions of differential equations based on Kirchhoff's law are obtained self-consistently at frequency-domain. Also, the steady-sate single-electron transistor (SET) current model and the time-dependent SET current model are used in this method. The reflected wave of a typical reflection-type RF-SET and the transmitted wave of a typical transmission-type RF-SET are calculated, and the accuracy of our developed method including the steady-state SET current model is verified with the method introduced by reference 2. At high frequency over GHz, results of our developed method including the time-dependent SET current model are considerably different from that including the steady-state SET current model. At high frequency over GHz, an exact time-dependent SET current model is needed to analyze RF-SET operation.

The Comparison of the Adaptive Equalization Performance in MCMA Algorithm by the Weighting Factor (MCMA알고리즘에서 weighting factor에 의한 적응 등화 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.137-143
    • /
    • 2010
  • This paper deals with the performance comparison of self adaptive equalizer by the weighting factor of MCMA cost function for the compensate the amplitude and phase distortion which occurs in the communication channel. The MCMA is improves the cost function of present CMA at the output of equalizer for the minimize of error function in the amplitude and phase, the value of weighting factor is used at this time. When the comparison of equalizer performance, we classified to initial state and steady state, then it represents the convergence time and convergence speed and steady state operation of equalizer to the predetermined level, it is determined by the weighting factor. We confirm to the different result to this 2 state by weighting factor values using computer simulation. By using the result of this paper, if we appropriately choose the weighting factor values in the environment of communication channel, it is expected that the high quality digital transmission is possible.

Development of expressway mode (고속도로 주행 모우드의 개발연구)

  • Park, Sun
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.63-70
    • /
    • 1984
  • The KIER expressway mode was constructed from actual speed-versus-time traces generated by an instrumented test car driven a variety of expressways. This mode reflects the correct proportion of operation on each of the six expressways and preserves the non-steady-state characteristics of real driving. The average speed of the mode is 79.43 km/h and the mode length is 16.22 km.

  • PDF

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

Evaluation of Piping Failure Probability of Reactor Coolant System in Kori Unit 1 Considering Stress Corrosion Cracking (응력부식균열을 고려한 고리 1호기 원자로냉각재계통의 배관 파손확률 평가)

  • Park, Jeong Soon;Choi, Young Hwan;Park, Jae Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • The piping failure probability of the reactor coolant system in Kori unit 1 was evaluated considering stress corrosion cracking. The P-PIE program (Probabilistic Piping Integrity Evaluation Program) developed in this study was used in the analysis. The effect of some variables such as oxygen concentration during start up and steady state operation, and operating temperature, which are related with stress corrosion cracking, on the piping failure probabilities was investigated. The effects of leak detection capability, the size of big leak, piping loops, and reactor types on the piping failure probability were also investigated. The results show that (1) LOCA (loss of coolant accident) probability of Kori unit 1 is extremely low, (2) leak probability is sensitive to oxygen concentration during steady state operation and operating temperature, while not sensitive to the oxygen concentration during start up, and (3) the piping thickness and operating temperature play important roles in the leak probabilities of the cold leg in 4 reactor types having same inner diameter.

  • PDF