• Title/Summary/Keyword: Steady-flow

Search Result 2,038, Processing Time 0.029 seconds

Comparative Evaluation of Three-dimensional Turbulence Models in Coastal Region (연안 해수유동에 관한 3차원 난류모형의 비교평가)

  • 정태성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.3
    • /
    • pp.256-267
    • /
    • 1996
  • In estuarine 3-dimensional numerical modeling. it is very important to calculate vertical eddy viscosity accurately. Various turbulence models employing eddy viscosity concept were applied to the steady flow in an open-channel and the tidal flow in long tidal channel and compared. The evaluations include the verification tests against experimental data sets for steady and tidal flows. The simulation results have shown that the compared models are in good agreements with experimental data of steady flow while only $textsc{k}$-$\varepsilon$ model, $textsc{k}$-ι model, and 1-equation model with well-defined mixing length profile give good agreements with experimental data of tidal flow.

  • PDF

The Beat and Flow Analysis of the Liquid Helium for the Pressurization of Liquid Rocket Propellant Tank (액체로켓 추진제 탱크 가압용 액체헬륨의 열유동 해석)

  • 조기주;정영석;조인현;김용욱;이대성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.10-17
    • /
    • 2003
  • The steady and transient thermal and flow analysis for liquid helium using for the pressurization of liquid rocket propellant tanks have been conducted numerically. The required inner diameter of helium channel that satisfy the design mass flow rate and velocity, through the steady state analyses for various thermal conditions at the wall, is determined and it is found that due to the sign of Joule-Thomson coefficient of helium, the temperature of helium increase monotonically for adiabatic wall condition. The temporal behavior of helium temperature, density, velocity are also investigated under the existence of local heat inflow on the wall.

Effect of 2-Methylaminoethyl-4,4'-Dimethoxy-5, 6, 5' ,6'-Dimethyl­enedioxybiphenyl-2-Carboxylic Acid-2'-Carboxylate Monohydro­chloride (DDB-S) on Indocyanine Green (ICG) Clearance in Rats

  • Lee Kyoung-Jin;Kim Jae-Ryung;Lee Chi-Ho
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.115-119
    • /
    • 2005
  • The clearance of ICG, a known hepatic blood flow marker was investigated in rats in order to examine whether DDB-S influences hepatic blood flow. The effect of DDB-S on the protein binding and blood-to-plasma partition of ICG was measured. The steady-state plasma concentration of ICG was monitored before and after co-administration of various concentration of DDB-S, and ICG clearance was estimated from the steady-state concentration and the infusion rate of ICG. There was no significant difference in protein binding and blood-to-plasma partition of ICG with and without addition of DDB-S (10, 20, and 40 ${\mu}g/mL)$. When ICG was infused into DDB-S pretreated rats, the steady-state concentrations of ICG decreased and the calculated ICG clearance increased. However, no dose-dependency of ICG Css on DDB-S Css was observed. Since DDB-S did not affect the protein binding and blood-to-plasma partition of ICG, the increased clearance of ICG with co-administration of DDB-S seems to be due to the increased hepatic blood flow by DDB-S.

EVALUATION OF TURBULENCE MODELS IN A HIGH PRESSURE TURBINE CASCADE SIMULATION (고압터빈 익렬 주위 유동해석에서 난류모델의 영향 평가)

  • El-Gendi, M.M.;Lee, K.U.;Chung, W.J.;Joh, C.Y.;Son, C.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.53-58
    • /
    • 2012
  • Steady flow simulations through a high pressure turbine guide vanes were carried out. The main objective of the present work is to study the performance of turbulence models on the steady flow prediction from aerodynamic and aerothermal points of view. Three turbulence models were compared, namely SST, k-${\omega}$ and ${\omega}$-Reynolds stress models. The laminar results were also compared. The comparison was done with emphasis on the isentropic Mach number and heat transfer coefficient along the blade, and total pressure loss in the wake region. The calculated isentropic Mach number showed reasonable agreement with experimental data along the blade surface for all three turbulent models. For the total pressure loss in the wake region, ${\omega}$-Reynolds stress model showed the best agreement with the experimental data. However, unless using an appropriate transition model, the heat transfer coefficients of all three turbulent models showed poor agreement with experimental data.

Enhancement of Airfoil Post-Stall Characteristics via a Jet Blowing (제트 블로잉에 의한 에어포일의 실속후 특성 향상)

  • Lee, Ki-Young;Chung, Heong-Seok;Cho, Dong-Hyun;Sohn, Myong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.188-197
    • /
    • 2007
  • Active flow control, in the form of steady and unsteady momentum injection via jet blowing was studied. A jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin slot. The normal and drag forces were measured with leading edge or trailing edge blowing Jet and compared with the results obtained with no blowing. The blowing jet has been shown to improve the aerodynamic performance of the airfoil. The steady jet proved more effective than pulsating jet in these experimental conditions. Furthermore for the case of leading edge steady blowing jet, the alleviation of non-linearity in the normal force curve slope can be seen at higher angles of attack. No effective trailing edge jet was observed in this highly separated flow. This shows that the stall control is highly depends on the characteristics of the boundary layer near the jet slot.

Development of the 3-D Bulk Motion Index for In-Cylinder Flow Induced by Induction System (II) - Based on the Steady Flow Rig Test Results - (흡기시스템을 통해 실린더로 유도되는 공기의 3차원 Bulk Motion Index 개발 (II) - 정상유동실험결과를 중심으로 -)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Park, Pyeong-Wan;Kim, Ki-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1066-1073
    • /
    • 2006
  • Recently, because the variable induction systems are adopted to intake system, in-cylinder flow induced by induction system is very complex. Therefore it is very difficult to describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, in order to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$) Finally, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

Study on the Flow of Briquette Gas in the Ondol Heating System (2) (Gas Flow in a Briquette Flue Tube) (온돌의 연탄개스유량에 관한 연구 (2) (유도연관내의 개스유동))

  • Min, Man-Gi;Jeong, Jae-Seon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.4 no.4
    • /
    • pp.275-284
    • /
    • 1975
  • By the experiment of a model Ondol heating system gas flow characteristics in a briquette flue tube was investigated. As a heat source electric heater was used, which renders steady flow condition of air. working fluid. It was observed that the flow augumentation may be obtained by increasing the vertial elevation of the flue tube, namely increase in the tube length or increase in the tube inclination, and the gas temperature at the tube entrance Among several factors which augument the flow rate slope of the flue tube has the most striking effect and then the temperature of gas entering the tube. Increase in length of the tube also auguments the flow but the rate of augumentation is so small that it gives little assistance to improvement of the flow The flow in a briguette flue gas does not essentially satisfy the one dimensional steady flow assumption. It is also observed that the flow begins to accompany irregular velocity fluctuation as inclination of the tube increases.

  • PDF

A DOMAIN DECOMPOSITION PRECONDITIONER FOR STEADY GROUNDWATER FLOW IN POROUS MEDIA

  • Ghahreman, N.;Kerayechian, A.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.773-785
    • /
    • 2000
  • In this paper an algorithm is presented based on the additive Schwarz method for steady groundwater flow in a porous medium. The subproblems in the algorithm correspond to the problem on a coarse grid and some overlapping subdomains. It will be shown that the rate of convergence is independent of the mesh parameters and discontinuities of the coefficients, and depends on the overlap ratio.

LAMINAR FLOW OVER A CUBOID (직육면체를 지나는 층류 유동)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • Laminar flows over a cube and a cuboid (cube extended in the streamwise direction) are numerically investigated for the Reynolds numbers between 50 and 350. First, vortical structures behind a cube and lift characteristics are scrutinized in order to understand the variation in vortex shedding characteristics with respect to the Reynolds number. As the Reynolds number increases, the flow over a cube experiences the steady planar-symmetric, unsteady planar-symmetric, and unsteady asymmetric flows. Similar to the sphere wake, the planar-symmetric flow over a cube can be divided into two different regimes: single-frequency regime and multiple-frequency regime. The former has a single frequency due to regular shedding of vortices with the same strength in time, while the latter has multiple frequency components due to temporal variation in the strength of shed vortices. Second, the effect of the length-to-height ratio of the cuboid on the flow characteristics is investigated for the Reynolds number of 270, at which planar-symmetric vortex shedding takes place behind a cube. With the ratio smaller than one, the flow over the cuboid becomes unsteady asymmetric flow, whereas it becomes steady flow for the ratios greater than one. With increasing the ratio, the drag coefficient first decreases and then increases. This feature is related to the flow reattachment on the side faces of the cuboid.