• Title/Summary/Keyword: Steady Performance

Search Result 1,804, Processing Time 0.03 seconds

Steady-State Performance Analysis of Pressurizer and Helical Steam Generator for SMART

  • Seo, Jae-Kwang;Kang, Hyung-Seok;Kim, Hwan-Yeol;Cho, Bong-Hyun;Lee, Doo-Jeong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.310-315
    • /
    • 1997
  • System-Integrated Modular Advanced Reactor (SMART), where major primary components such as modular helical steam generator and self regulating pressurizer are integrated into reactor vessel, is currently under development. The pressurizer is designed to control the primary pressure mainly with partial pressure of nitrogen gas and to maintain the fluid temperature as low as possible for the purpose of minimizing steam contribution. The steam generator (SG) is designed to produce super-heated steam inside tube at power operation. Because the in-vessel pressurizer and in-vessel SG are classified as the characteristic components of SMART, it is important to perform a steady state calculation of these components in order to evaluate the adoption of these components. A steady state analysis of the in-vessel pressurizer and in-vessel SG has been performed under normal power operation and the results show an acceptable performance of the components.

  • PDF

Torque Ripple Minimization of PMSM Using Parameter Optimization Based Iterative Learning Control

  • Xia, Changliang;Deng, Weitao;Shi, Tingna;Yan, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.425-436
    • /
    • 2016
  • In this paper, a parameter optimization based iterative learning control strategy is presented for permanent magnet synchronous motor control. This paper analyzes the mechanism of iterative learning control suppressing PMSM torque ripple and discusses the impact of controller parameters on steady-state and dynamic performance of the system. Based on the analysis, an optimization problem is constructed, and the expression of the optimal controller parameter is obtained to adjust the controller parameter online. Experimental research is carried out on a 5.2kW PMSM. The results show that the parameter optimization based iterative learning control proposed in this paper achieves lower torque ripple during steady-state operation and short regulating time of dynamic response, thus satisfying the demands for both steady state and dynamic performance of the speed regulating system.

Step-Size Control for Width Adaptation in Radial Basis Function Networks for Nonlinear Channel Equalization

  • Kim, Nam-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.600-604
    • /
    • 2010
  • A method of width adaptation in the radial basis function network (RBFN) using stochastic gradient (SG) algorithm is introduced. Using Taylor's expansion of error signal and differentiating the error with respect to the step-size, the optimal time-varying step-size of the width in RBFN is derived. The proposed approach to adjusting widths in RBFN achieves superior learning speed and the steady-state mean square error (MSE) performance in nonlinear channel environment. The proposed method has shown enhanced steady-state MSE performance by more than 3 dB in both nonlinear channel environments. The results confirm that controlling over step-size of the width in RBFN by the proposed algorithm can be an effective approach to enhancement of convergence speed and the steady-state value of MSE.

A Basic Study on Control Algorithm for Car HVAC (승용차 공기조화 제어 알고리즘 기초연구)

  • Shin, Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.275-281
    • /
    • 2010
  • Car HVAC is one of main factors influencing a potential customer's first impression. It should be fault-free, which requires the most stable control performance. So, the control algorithm consists of a proportional feedback only, not with an integral action needed for elimination of steady-state errors. To reduce the errors and make the response faster, feedforward algorithm based on predicted thermal load is added. To evaluate the performance, car HVAC is dynamically modelled and its control logic is simulated. The results shows that the proportional feedback leads to about $4^{\circ}C$ of steady-state error. When the feedback is combined with the feedforward algorithm and with a set value update based on disturbances, it predicts less than $1^{\circ}C$ of control error and improved thermal comfort.

A Study on the Effects of Suspension Design Parameters on Cornering Performances of a Vehicle (차량의 선회성능에 미치는 현가장치 설계인자의 영향에 관한 연구)

  • 이장무;윤중락;강주석;정종혁;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.27-37
    • /
    • 1996
  • In this paper the effects of suspension design parameters on the steady-state cornering performance of vehicles are studied. To investigate the understeer characteristics of vehicles, steady-state cornering equatons are derived from a two-track model which is expanded from a simple one track model. The effects of the suspension design parameters as well as those of lateral load transfer are taken into consideration. To verify the equation, a skid pad test was carried out with a domestic passenger car. The design parameters of the vehicle are measured using a Suspension Parameter Measuring Device(SPMD). Based on these results, parameter studies are carried out to determine the effect of design parameters on the cornering performance of a vehicle, both in low and high acceleration region.

  • PDF

Dynamic Analysis and Optimization of 1ton Commercial Truck Using ADAMS/Insight (ADAMS/Insight를 이용한 1톤 상용트럭의 동역학 해석 및 최적화)

  • Chun, Hung-Ho;Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.15-20
    • /
    • 2003
  • Stochastic simulation technique has advantages over deterministic simulation in various engineering analysis, since stochastic simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation mothod in ADAMS/Insight for steady-state cornering and J-turn behavior of a truck with design variables like hard points and busing stiffnesses have performed to achieve better dynamic performance. The main purpose is to improve understeer gradient at steady-state cornering and minimize peak lateral acceleration and peak yaw rate at J-turn. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Estimation and Compensation of the Coulomb Friction in an Inverted Pendulum (쿨롱 마찰력 추정과 보상을 통한 역진자 시스템의 제어 성능 개선)

  • Park, Duck-Gee;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.483-490
    • /
    • 2006
  • When the nonlinearities, such as friction and backlash, are not considered in the controller design, undesirable oscillations can occur in the steady-state response of a control system. This paper deals with a method to reduce oscillations that often appear in the steady-state response of a pendulum system, which is controlled by a state feedback controller based on the linearized system model. With an assumption that the oscillations shown in the steady-state are caused by the Coulomb friction, we improve the performance of stabilization and tracking by estimating and compensating for the Coulomb friction in the pendulum system. Experimental results show that the control performance can be improved sufficiently by the proposed method, when it is applied to an inverted cart pendulum which is a multi-variable unstable system. Furthermore, we could see that the Coulomb friction model used in the estimation of the friction is valid in applying the suggested method.

Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study

  • Rajoo, Srithar;Martinez-Botas, Ricardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.155-168
    • /
    • 2008
  • This paper investigates a variable geometry (VG) mixed flow turbine with a novel, purposely designed pivoting nozzle vane ring. The nozzle vane ring was matched to the 3-dimensional aspect of the mixed flow rotor leading edge with lean stacking. It was found that for a nozzle vane ring in a volute, the vane surface pressure is highly affected by the flow in the volute rather than the adjacent vane surface interactions, especially at closer nozzle positions. The performance of the VG mixed flow turbine has been evaluated experimentally in steady and unsteady flow conditions. The VG mixed flow turbine shows higher peak efficiency and swallowing capacity at various vane angle settings compared to an equivalent nozzleless turbine. Comparison with an equivalent straight vane arrangement shows a higher swallowing capacity but similar efficiencies. The VG turbine unsteady performance was found to deviate substantially from the quasi-steady assumption compared to a nozzleless turbine. This is more evident in the higher vane angle settings (smaller nozzle passage), where there are high possibility of choking during a pulse cycle. The presented steady and unsteady results are expected to be beneficial in the design of variable geometry turbochargers, especially the ones with a mixed flow turbine.

Development of a Steady Arm for the Maximum Speed of 400 km/h (400 km/h급 전차선로 곡선당김금구 개발)

  • Lee, Kiwon;Park, Young;Kwon, Sam-Young;Cho, Yong Hyeon;Jeong, Heonsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1742-1746
    • /
    • 2014
  • In order to develop a overhead catenary system for the maximum speed of 400 km/h on Honam high-speed line, increasing tension of contact wire, changing dropper distributions, reducing a hard point and etc. should be considered. And it is also essential to develop core components taking account of the increased tension. Therefore we developed a new steady arm for the max. speed of 400 km/h in this study. FEM (Finite Elements Method) analysis was performed to ensure the strength of the arm. An oval shape was applied to the arm, so that 25 % of strength was increased and 9 % of weight was decreased. And a type test according to the code KRSA-3012 was performed to ensure the performance. Fatigue test in KRRI (Korea Railroad Research Institute)'s test-bed was also performed to evaluate its performance. Some section of the Honam High-speed line was constructed with the developed steady arm.

Steady-state Thrust Characteristics of Hydrazine Thruster for Attitude Control of Space Launch Vehicles (우주발사체 자세제어용 하이드라진 추력기의 정상상태 추력 특성)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.48-55
    • /
    • 2012
  • An ambient hot-firing test was carried out for the hydrazine thruster which may be employed in the space launch vehicles. The thruster is designed to produce 67 N (15 $lb_f$) of nominal steady-state thrust at an inlet pressure of 2.41 MPa (350 psia). A scrutiny into the performance characteristics of thruster is made in terms of thrust, propellant supply pressure, mass flow rate, chamber pressure, and temperature at the steady-state firing mode. As a result, it is ensured that the practical performance efficiencies are above 89.1% compared to its ideal requirements.