• Title/Summary/Keyword: Steady Performance

Search Result 1,804, Processing Time 0.034 seconds

An Analysis of Medical Articles Published Domestically and Abroad by Korean Researchers from 1960 to 2008 (국내의학자가 국내외에 발표한 의학논문 현황 분석 - 1960년부터 2008년까지 -)

  • Jang, Hae-Lan;Kang, Gil-Won;Lee, Young-Sung;Tak, Yang-Ju
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.3
    • /
    • pp.259-277
    • /
    • 2011
  • The purpose of this study is to analyze how the changes of evaluation standards have affected Korean medical researchers' academic performance by comparing the publication status of medical articles both domestically and abroad. A total of 314,559 domestic articles in KMbase and 53,423 articles stored in MEDLINE published abroad by Korean researchers were analyzed. All of the data were compared per year according to the research field and indexed journals by numbers and proportions of articles published domestically and abroad. The analysis showed that the number of total articles and the proportion of articles published abroad increased continuously. In the early 2000s, articles published in Korea decreased, otherwise articles published abroad increased sharply. SCI articles showed a steady increase before 2000, and continued to increase over the next few years. KCI articles also showed a rapid increase in the early 2000s while other articles were decreasing. Publication trends shown in this study were similar despite quantitative and timely differences by research area. Performance evaluations focusing on SCI articles affected on quantitative decrease in the number of total articles published domestically. Quantitative growth itself is not an absolute indicator for academic achievement. Therefore, to complement any evaluation of academic achievement, qualitative analysis needs to be done as well.

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part I: Performance Estimation of FDS) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향(Part I: FDS의 성능평가))

  • Hwang, Cheol-Hong;Park, Chung-Hwa;Ko, Gwon-Hyun;Lock, Andrew
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Experimental and numerical studies were conducted to investigate the thermal and chemical characteristics of heptane fires in a full-scale ISO 9705 room. Representative fire conditions were considered for over-ventilated fire (OVF) and under-ventilated fire (UVF). Fuel flow rate and doorway width were changed to create OVF and UVF conditions. Detailed comparisons of temperature and species concentrations between experimental and numerical data were presented in order to validate the predictive performance of FDS (Fire Dynamic Simulator). The OVF and UVF were explicitly characterized with distributions of temperature and product formation measured in the upper layer, as well as combustion efficiency and global equivalence ratio. It was shown that the numerical results provided a quantitatively realistic prediction of the experimental results observed in the OVF conditions. For the UVF, the numerically predicted temperature showed reasonable agreement with the measured temperature. The predicted steady-state volume fractions of $O_2$, $CO_2$, CO and THC also agreed quantitatively with the experimental data. Although there were some limitations to predict accurately the transient behavior in terms of CO production/consumption in the UVF condition, it was concluded that the current FDS was very useful tool to predict the fire characteristics inside the compartment for the OVF and UVF.

System Identification and Pitch Control of a Planing Hull Ship with a Controllable Stern Intercepter (능동제어가 가능한 선미 인터셉터가 부착된 활주선형 선박의 시스템 식별과 자세 제어에 관한 연구)

  • Choi, Hujae;Park, Jongyong;Kim, Dongjin;Kim, Sunyoung;Lee, Jooho;Ahn, Jinhyeong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.401-414
    • /
    • 2018
  • Planing hull type ships are often equipped with interceptor or trim tab to improve the excessive trim angle which leads to poor resistance and sea keeping performances. The purpose of this study is to design a controller to control the attitude of the ship by controllable stern interceptor and validate the effectiveness of the attitude control by the towing tank test. Embedded controller, servo motor and controllable stern interceptor system were equipped with planing hull type model ship. Prior to designing the control algorithm, a model test was performed to identify the system dynamic model of the planing hull type ship including the stern interceptor. The matrix components of model were optimized by Genetic Algorithm. Using the identified model, PID controller which is a classical controller and sliding mode controller which is a nonlinear robust controller were designed. Gain tuning of the controllers and running simulation was conducted before the towing tank test. Inserting the designed control algorithm into the embedded controller of the model ship, the effectiveness of the active control of the stern interceptor was validated by towing tank test. In still water test with small disturbance, the sliding mode controller showed better performance of canceling the disturbance and the steady-state control performance than the PID controller.

Long-Term Trend Analysis in Nuclear Medicine Examinations (핵의학 영상 검사의 중장기 추세 분석 - 서울 소재 일개 상급 종합병원을 중심으로 -)

  • Jung, Woo-Young;Shim, Dong-Oh;Choi, Jae-Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.15-28
    • /
    • 2019
  • Purpose Nuclear medicine was initially introduced in Korea in 1969 and widely applied to treat hyperthyroidism with $^{131}I$. Also, gamma camera was adopted in 1969 in the first place and its application has been growing continually in many ways. We analyzed long-term trend in nuclear medicine examinations for the last 2 decades. The purpose of this paper is to make predictions and to set both plans and directions on the development of nuclear medicine. Materials and Methods We analyzed the performance of nuclear medicine examinations and therapies performed in Asan Medical Center from 1998 to 2017. Results Results from the last 20 years regarding Bone scan, Renal scan, MUGA scan and $^{18}F$-FPCIT, Bone Mineral Density were on a increase. And Myocardium perfusion SPECT, Thyroid scan, Lung scan were on a decrease while $^{18}F-FDG$ PET maintained on a steady course. Until 2010 there was a positive performance with the therapy but after the excessive medical care in thyroid examination performance is at status quo. Key events such as a medical strike(2000), Middle-East Respiratory Syndrome (2015) influenced the overall performance of the therapy. Conclusion In order to promote a long-term growth in nuclear medicine examination and therapy, it is inevitable to respond to the changes in current medical environment. Furthermore, it is strongly suggested to put efforts to maintain and develop new examinations and clinical indicators.

Temperature Prediction of Cylinder Components in Medium-Speed Diesel Engine Using Conjugate Heat Transfer Analysis (복합 열전달 해석을 이용한 중속 디젤엔진 실린더 부품 온도 분포 예측)

  • Choi, Seong Wook;Yoon, Wook Hyoen;Park, Jong Il;Kang, Jeong Min;Park, Hyun Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.781-788
    • /
    • 2013
  • Predicting the engine component temperature is a basic step to conduct structural safety evaluation in medium-speed diesel engine design. Recent trends such as increasing power density and performance necessitate more effective thermal management of the engine for achieving the desired durability and reliability. In addition, the local temperatures of several engine components must be maintained in the proper range to avoid problems such as low- or high-temperature corrosion. Therefore, it is very important to predict the temperature distribution of each engine part accurately in the design stage. In this study, the temperature of an engine component is calculated by using steady-state conjugate heat transfer analysis. A proper approach to determine the thermal load distribution on the thermal boundary area is suggested by using 1D engine system analysis, 3D transient CFD results, and previous experimental data from another developed engine model. A Hyundai HiMSEN engine having 250-mm bore size was chosen to validate the analysis procedure. The predicted results showed a reasonable agreement with experimental results.

Technology Acceptance Modeling based on User Experience for Autonomous Vehicles

  • Cho, Yujun;Park, Jaekyu;Park, Sungjun;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.87-108
    • /
    • 2017
  • Objective: The purpose of this study was to precede the acceptance study based on automation steps and user experience that was lacked in the past study on the core technology of autonomous vehicle, ADAS. The first objective was to construct the acceptance model of ADAS technology that is the core technology, and draw factors that affect behavioral intention through user experience-based evaluation by applying driving simulator. The second one was to see the change of factors on automation step of autonomous vehicle through the UX/UA score. Background: The number of vehicles with the introduction of ADAS is increasing, and it caused change of interaction between vehicle and driver as automation is being developed on the particular drive factor. For this reason, it is becoming important to study the technology acceptance on how driver can actively accept giving up some parts of automated drive operation and handing over the authority to vehicle. Method: We organized the study model and items through literature investigation and the scenario according to the 4 stages of automation of autonomous vehicle, and preceded acceptance assessment using driving simulator. Total 68 men and woman were participated in this experiment. Results: We drew results of Performance Expectancy (PE), Social Influence (SI), Perceived Safety (PS), Anxiety (AX), Trust (T) and Affective Satisfaction (AS) as the factors that affect Behavioral Intention (BI). Also the drawn factors shows that UX/UA score has a significant difference statistically according to the automation steps of autonomous vehicle, and UX/UA tends to move up until the stage 2 of automation, and at stage 3 it goes down to the lowest level, and it increases a little or stays steady at stage 4. Conclusion and Application: First, we presented the acceptance model of ADAS that is the core technology of autonomous vehicle, and it could be the basis of the future acceptance study of the ADAS technology as it verifies through user experience-based assessment using driving simulator. Second, it could be helpful to the appropriate ADAS development in the future as drawing the change of factors and predicting the acceptance level according to the automation stages of autonomous vehicle through UX/UA score, and it could also grasp and avoid the problem that affect the acceptance level. It is possible to use these study results as tools to test validity of function before ADAS offering company launches the products. Also it will help to prevent the problems that could be caused when applying the autonomous vehicle technology, and to establish technology that is easily acceptable for drivers, so it will improve safety and convenience of drivers.

A Study on Poisoning of the Reforming Catalysts on the Position of Anode in the Direct Internal Reforming Molten Carbonate Fuel Cell (직접 내부개질형 용융탄산염 연료전지의 음극판 위치에 따른 개질 촉매 피독에 관한 연구)

  • Wee, Jung Ho;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.652-659
    • /
    • 1999
  • The trend of poisoning of reforming catalyst along with the position of anodic catalyst bed was studied. Keeping the conditions that steam to carbon ratio was 2.5, operating voltage was 0.75 V, current density was $140mA/cm^2$, the unit cell was operated during 24 hrs at a steady state. And then the cell was stopped, the catalysts packed in the position of inlet, middle and outlet were sampled individually and then the amount of carbon, Li and K poisoned were analysed. After 100 hrs operated, the catalysts at the same positions were analysed at the same manner. The result of this experiment was as followings. After 24 hrs operated, the poisoning amounts of Li and K in the catalyst were 0.27 wt% at inlet, 0.23 wt% at middle and the highest value 1.59 wt% at outlet. After 100 hrs, the amount of poisoning is the highest in the catalyst packed at the inlet of unit cell. The performance simulation of unit cell explained these trends of poisoning catalysts. The simulation told that the catalyst in the region of the inlet of unit cell treated the 90% of initial methane flow rate and the highest electrochemical reaction happened in this region. So the catalysts of this region were the most poisoned with carbon, Li and K and also the rate of poisoning is faster than that of the catalyst at other regions. The temperature at the region of outlet of unit cell was $30^{\circ}C$ higher than that of other regions, so more Li, and K vaporized than at other regions and little reforming reaction at this region made the catalysts poisoning rate low.

  • PDF

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

The three dimensional measuring system for ELF magnetic fields with the multiturn loop-type sensors (멀티턴 루우프형 센서를 이용한 3차원 ELF 자장측정계)

  • Lee, Bok-Hee;Lee, Jeong-Gee;Kil, Gyung-Suk;Ahn, Chang-Hwan;Park, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.29-36
    • /
    • 1996
  • With the three dimensional magnetic field measuring system dealt with in this paper, accurate measurements and analyses of extremely low frequency(ELF) magnetic fields caused by starting and/or operating electric devices and power installations can be conducted. To obtain high performance for lower frequency and spatial components without any distortion, the measuring system is designed as three dimensionally including the multiturn loop-type magnetic field sensors, differential amplifiers and active integrators. As the results of calibration experiments, the frequency response characteristics of the measuring system range from 8[Hz] to about 53[kHz] for each direction of x, y, z axes, and the response sensitivities are 9.54, 9.21, $10.89[mV/{\mu}T]$, respectively. The actual survey experiments by using an oscillating impulse current generator confirm a reliability of the proposed measuring system. Also, through the other experiments by using small-sized induction motors, the magnetic field intensities when starting and steady-state operating mark 15.8, $8.61[{\mu}T]$ as maximum value, respectively. And those intensities decrease steeply according as the measuring distance increases.

  • PDF

Roles of B-dot Controller and Failure Analysis for Dawn-dusk LEO Satellite (6시 저궤도 위성에서 B-dot 제어기 역할과 고장분석)

  • Rhee, Seung-Wu;Kim, Hong-Joong;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.200-209
    • /
    • 2013
  • In this paper, the types of B-dot controller and the review results of B-dot controller stability are summarized. Also, it is confirmed that B-dot controller is very useful and essential tool when a dawn-dusk low earth orbit(LEO) large satellite has especially to capture the Sun for a required power supply in a reliable way after anomaly and that its algorithm is very simple for on-board implementation. New physical interpretation of B-dot controller is presented as a result of extensive theoretical investigation introducing the concept of transient control torque and steady state control torque. Also, the failure effect analysis results of magnetic torquers as well as a simulation verification are included. And the design recommendation for optimal design is provided to cope with the failure of magnetic torquer. Nonlinear simulation results are included to justify its capability as well as its performance for an application to a dawn-dusk LEO large satellite.