• Title/Summary/Keyword: Steady Performance

Search Result 1,802, Processing Time 0.03 seconds

가스터빈 엔진 천이 성능 시험에 의한 정상상태 성능 예측

  • Yang, In-Young;Jun, Yong-Min;Kim, Chun-Taek;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Methodology of predicting steady performance of gas turbine engine from transient test data was explored to develop an economic performance test technique. Discrepancy of transient performance from steady performance was categorized as dynamic, thermal and aerodynamic transient effects. Each effect was mathematically modeled and quantified to provide correction factors for calculating steady performance. The influence of engine inlet/outlet condition change on engine performance was corrected firstly, and then steady performance was predicted from the correction factors. The result was compared with steady performance test data. This correction method showed an acceptable level of precision, 3.68% difference of fuel flow.

  • PDF

Prediction of Gas Turbine Engine Steady Performance from Transient Performance Test (가스터빈엔진 천이 성능 시험에 의한 정상상태 성능 예측)

  • Yang, In-Young;Jun, Yong-Min;Kim, Chun-Taek;Nam, Sam-Sik;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.62-70
    • /
    • 2002
  • Methodology of predicting steady performance of gas turbine engine from transient test data was explored to develop an economic performance test technique. Discrepancy of transient performance from steady performance was categorized as dynamic, thermal and aerodynamic transient effects. Each effect was mathematically modeled and quantified to provide correction factors for calculating steady performance. Engine performance tests were conducted at Altitude Engine Test Facility of KARI. The influence of engine inlet/outlet condition change on engine performance was corrected firstly, and then steady performance was predicted from the correction factors. The result was compared with steady performance test data. This correction method showed an acceptable level of precision, 3.68% difference of fuel flow.

Performance Analysis of a Stand-alone Brushless Doubly-fed Induction Generator Using a New T-type Steady-state Model

  • Liu, Yi;Xu, Wei;Zhi, Gang;Zhang, Junlin
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1027-1036
    • /
    • 2017
  • The brushless doubly-fed induction generator (BDFIG) is a new type of dual stator winding induction generator. In such a generator, both the power winding (PW) and the control winding (CW) are housed in the stator. This paper presents the performance characteristics of a stand-alone BDFIG operation system. A new T-type steady-state model of a BDFIG is proposed. This model is more suitable for the performance analysis of stand-alone BDFIGs than the conventional Π-type steady-state model and the simplified inner core steady-state model. The characteristics of the power flow and CW current are analyzed by detailed mathematical derivations on the basis of the proposed T-type steady-state model. The analysis results are verified by experiments, which are carried out on a prototype BDFIG. The results of the performance analysis contribute to simplifying the control circuit, improving the control performance, and selecting an appropriate BDFIG for actual industrial applications.

A Quantitative Performance Index for an Input Observer (II) - Analysis in Steady-State - (입력관측기의 정량적 성능지표 (II) -정상상태 해석-)

  • Jung, Jong-Chul;Lee, Boem-Suk;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2067-2072
    • /
    • 2002
  • The closed-loop state and input observer is a pole-placement type observer and estimates unknown state and input variables simultaneously. Pole-placement type observers may have poor performances with respect to modeling error and sensing bias error. The effects of these ill-conditioning factors must be minimized for the robust performance in designing observers. In this paper, the steady-state performance of the closed-loop state and input observer is investigated quantitatively and is represented as the estimation error bounds. The performance indices are selected from these error bounds and are related to the robustness with respect to modeling errors and sensing bias. By considering both transient and steady-state performance, the main performance index is determined as the condition number of the eigenvector matrix based on $L_2$-norm.

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.

Performance Prediction of the 1-Stags Axial Fan using Steady Coupled Blade Row Calculation Model (정상 간섭 익렬 계산 모델을 용한 1단 축류 송풍기의 성능 예측)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.49-54
    • /
    • 1998
  • The flow inside an axial turbomachinery with multi-stage can be characterized as unsteady phenomena. In order to predict accurately these complex unsteady flow patterns including rotor-stator interaction effects, enormous computer resources are required. So it is not compatible in preliminary design process. In this study, steady coupled blade row flow with rotor-stator interaction solver is developed using interrow mixing model and used to predict the performance of the axial fan. To verify the computational method, the calculations are compared with experimental results and show satisfactory agreement with them. The interaction effects on the performance of the axial fan have also been studied by comparing the results of steady coupled blade row and steady single blade row flow calculation.

  • PDF

Steady-State and Transient Performance Simulation of a Turboshaft Engine with a Free Power Turbine

  • King, Chang-Duk;Chung, Suk-Choo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1296-1304
    • /
    • 2000
  • A program of steady-state and transient performance analysis for a 200kW-class small turboshaft engine with free power turbine was developed. An existing turbojet engine was used for the gas generator of the developed turboshaft engine, which was modified to satisfy performance requirements of this turboshaft engine. To verify the accuracy of steady-state performance program for this engine: the program was applied to the gas turbine test unit of the same type, and the analysis results were compared with experimental results. The developed transient performance analysis program using the CMF (Constant Mass Flow) method was utilized to analyze the cases of step increase and ramp increase of the fuel.

  • PDF

Improvement of Steady State Response Using PI+Double Integral Controller (비례적분+이중적분 제어기를 이용한 정상상태 응답 개선)

  • Jung, Gyu Hong
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • The performance characteristics of a dynamic control system are evaluated according to the transient and steady-state responses. The transient performance is the controllability of the output for the tracking of the reference or the ability to reduce or reject the effects of unwanted disturbances; alternatively, the steady-state performance is represented by the magnitude of the control error at the steady state. As the effects of the two performances on each other are reciprocal, a controller design that shows a zero steady-state error for the ramp input is uncommon because of the challenge regarding the achievement of an acceptable transient response. This paper proposes a PI+double-integral controller for the elimination of the steady-state error for the ramp input while a sound transient performance is maintained. The control-gain design procedure is described by the second-order response for the step input and the response of the error dynamics for the ramp input. The PI+double-integral controller is designed for the first-order transfer function that is derived from a system identification with the open-loop experiment data of the dc-motor. The simple structure of the proposed controller enables the adoption of a low-end microcontroller for the implementation of a real-time control. The experiment results show that the control performance is as effective as that of the simulation analysis for the operating point of linear system; furthermore, the PI+double-integral controller can be conveniently applied to the control system, which is desirable for the improvement of the steady-state error.

A study on the steady-state and dynamic performance of polymer electrolyte fuel cells under various external humidification conditions (고분자 전해질 연료전지의 외부가습 조건에 따른 정상상태 및 비정상상태 성능특성 연구)

  • Lee, Yong-Taek;Kim, Bo-Sung;Kim, Yong-Chan;Choi, Jong-Min;Ko, Jang-Myoun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3407-3412
    • /
    • 2007
  • The performance characteristics of the polymer electrolyte fuel cells (PEFCs) were investigated under various humidification conditions at steady-state and transient conditions. The PEFC studied in this study was characterized by I-V curves in potentiostatic mode. The I-V curves representing steady-state performance were obtained from OCV to 0.25V, and the dynamic performance responses were obtained at some points of voltages. The anodic external humidification was applied and the humidity was controlled from 20% to 100%. The effects of relative humidity of hydrogen were measured with the dry air at the cathode. At high voltage region, the performance at high temperature was higher, but at low voltage region, low temperature condition showed the higher performance. The dynamic responses were observed at the instant when the voltage of the PEFC was changed. It was observed that the performance reached steady-state earlier with the increase of temperature.

  • PDF

Improvement of Steady-state Error in a Driving System with Time-optimal Controller (최단시간 제어기를 이용한 구동장치의 정상상태 오차개선)

  • Lee, Seong-Woo;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.861-869
    • /
    • 2012
  • This paper presents a high performance position controller in a driving system using a time optimal control which is widely used to control driving systems to a desired reference position or velocity in minimum response time. The main purpose of this study is an improvement of transient response performance rather than steady-state response comparing with another various control strategies. In order to improve the performance of time optimal control, we tried to find the cause of the steady-state error in the driving system we have already made up and also suggest the newly modified type of time optimal control method in this paper.