• Title/Summary/Keyword: Stator Windings

Search Result 264, Processing Time 0.027 seconds

A Study on Insulation Property of White Powder Found on High Voltage Motor Stator Winding (백화현상이 나타난 고압전동기 고정자권선의 절연특성 연구)

  • Kong, Tae-Sik;Kim, Hee-Dong;Lee, Sang-Kil;Kim, Kyeong-Yeol;Ju, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1627-1631
    • /
    • 2011
  • During a routine inspection of a large pump motor at power plant, white powder was found on the surface of the stator end windings. Visual inspection and high voltage insulation diagnosis was performed to determine whether this motor is available. The purpose of this paper is to understand the insulation properties of white powder found on high voltage stator and to know prevention of insulation weakness.

A Study on Evaluation of Insulation Reliability for High-Voltage Motor Stator Windings (고압 유도전동기 고정자 권선의 절연 신뢰성 평가에 관한 연구)

  • Hwang, Don-Ha;Shim, Woo-Yong;Kang, Dong-Sik;Kang, Do-Hyun;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1909-1912
    • /
    • 2002
  • Recently, domestic electrical parts and materials without safety and reliability are avoided by consumers and introducing the product liability (PL) law. Therefore, the dependance on import product of electrical machines will be increased in the future. In this paper, high-voltage induction motor ensures reliance that can maintain the performance of machines for a long time. Furthermore, the test of reliability evaluation that predicts a remaining life and breakdown test of the stator winding are performed. Also, this paper introduces various reliability assessment tests for getting reliability of the stator winding insulation in high-voltage motor.

  • PDF

Analysis of Two-phase E-core Switched Reluctance Machines Using Magnetic Equivalent Circuit Technique (자기등가회로 기법을 사용한 2상 E-core SRM의 해석에 관한 연구)

  • Lee, Chee-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1986-1989
    • /
    • 2010
  • The modification of magnetic structures for an E-core switched reluctance machine (SRM) comprising two segmented stator cores or a monolithic stator core is presented for ease of assembly, good manufacturability, mechanical robustness, and electromagnetic performance improvement. The E-core stator has four small poles with phase windings and two or four large poles (hereafter referred to as common poles), in between. The common poles are shared by both phases for positive torque generation during the entire operation. The E-core SRMs are compared to a conventional two-phase SRM. The comparison includes cost savings, torque, copper and core losses, and efficiency in order to validate the distinct features of the E-core SRMs. Magnetic equivalent circuit (MEC) technique is employed for proving the benefits of the E-core common-pole structure.

Insulation Properties of Unaged Stator Winding Bars for Turbine Generators (터빈 발전기용 비열화 고정자 권선 바의 절연 특성)

  • Kim, Tae-Hee;Kang, Myung-Guk;Lee, Jai-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2097-2099
    • /
    • 2005
  • Class-F and class-B insulating materials based on the resin rich type mica-epoxy composites for the stator windings in large turbine generators have been developed by DHIC. In recent, stator winding bars applied with prototype insulation tapes and commercially available resin rich groundwall tapes were produced through the same manufacturing processes as the real bars. Comparative tests to obtain the insulation properties of both bars were carried out such as IR/PI. dissipation factor and partial discharge at room temperature. In this paper, the manufacturing processes and the insulation properties of the bars which were not aged are presented.

  • PDF

Analysis of Overvoltage Distribution in Stator Winding of Induction Motor Driven by IGBT PWM Inverter (IGBT 인버터 구동 유도전동기 고정자 권선에서의 과도전압 분포 해석)

  • Bae S. W.;Hwang D. H.;Kim Y. J.;Kim D. H.;Kim M. H.;Lee I. W.
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.17-20
    • /
    • 2002
  • In this paper voltage distribution in stator windings of induction motor driven by IGBT PWM inverter is studied. To analyze the irregular voltage of stator winding, equivalent circuit model of inverter-cable-motor was proposed and high frequency parameter is computed by using finite element method (FEM). Electro-magnetic transient program (EMTP) analysis of the whole system for induction motor and PWM inverter is proposed. Induction motor, 50[HP], and a switching surge generator was built to consider the voltage distribution. The results of EMTP analysis compared with experimental results.

  • PDF

Control of Radial Force in Double Stator Type Bearingless Switched Reluctance Motor

  • Peng, Wei;Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.766-772
    • /
    • 2013
  • Modeling and control of radial force in the double stator type bearingless switched reluctance motor (BLSRM) is researched. The rotational torque is controlled independently from the radial force control. And the radial force is constant which is independent from the rotor position. In order to realize steady suspension, analytical models of torque and radial force for the proposed structure are derived. Meanwhile, in order to realize steady suspension, control scheme for proposed BLSRM is proposed. In the control method, the radial force can be controlled in arbitrary direction and magnitude by selecting some combinations of radial force windings. The validities of structure and control method are verified by the experimental results.

Performance Comparison of Conventional and Segmental Rotor Type Switched Reluctance Motor

  • Jeong, Kwang-Il;Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1138-1146
    • /
    • 2018
  • Performance comparisons of switched reluctance motor for cooling fan application are dealt in this paper. Conventional and novel segmental type motors with the same dimension are compared. The conventional 12/8 type is very popular and used widely. The structure of segmental rotor type motor is constructed from a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. This type of motor has short flux path and no flux reversal in the stator. The auxiliary poles are not wound by the windings and only provide the flux return path. Compared with conventional SRM, the segmental structure increases electrical utilization of the machine and decreases core losses, which leads to higher efficiency. To verify the segmental structure, finite element method (FEM) is employed to get static and dynamic characteristics of both SRMs. Finally, the prototypes of conventional and segmental SRMs are tested for characteristics comparisons.

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

Parallel Operation of Voltage Source Inverters by Using Stator Windings of High Power Three-Phase Induction Motors (대전력 3상 유도전동기의 고정자권선을 이용한 전압원 인버터의 병렬운전)

  • 김인동;노의철;전성즙
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.815-820
    • /
    • 2004
  • The parallel operation of voltage source inverters using stator windings of high power three-phase induction motors was proposed in this paper. Most current high power induction motors with more than 4 electric poles have their external terminals installed so that windings of each phase can be approached from the outside. High power induction motors can be driven by parallel-operating several voltage source inverters through these external terminals. This way, in case a certain inverter breaks down, the operation torque will get decreased but the system can maintain its operation with the other inverters, so it can cope more effectively with breakdowns. Moreover, by providing phase difference to the switching movements of each inverter, it can increase equivalent switching frequency, which helps achieve good characteristics such as the reduction in the ripple of output torque, the reduction in the ripple of input current, and the reduction in the size of DC capacitors. Besides, since power is divided into each inverter, it can also decrease the ifluence of EMI occurring in the system. The characteristics of the proposed method were proved through computer simulations in this paper.

A Study on Multi-Physics Analysis of High-Resolution Winding Type Resolver and Rotary Transformer (고정밀 권선형 레졸버의 변압부 및 레졸버 연동해석 연구)

  • Shin, Young-Chul;Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.146-152
    • /
    • 2016
  • This paper describes a multi-physics analysis of a high resolution winding type resolver and rotary transformer using FEM (Finite Element Method). The rotary transformer boosts the input voltage to a high voltage which can be input into the rotor windings of the resolver. Through multi-physics models of the transformer and resolver, the characteristics of the output signals for the resolver system with high resolution can be derived. Moreover, the circuit model of the interface part between the transformer and resolver should be considered, because of the calculation of the input current to the resolver. The winding type resolver is composed of 32x and 1x stator windings for high resolution. Then, the output signals of the stator windings, which make sinusoidal SIN and COS waves with a $90^{\circ}$ phase difference, are verified.