• Title/Summary/Keyword: Stator Flux Oriented Control

Search Result 59, Processing Time 0.024 seconds

Improved Maximum Efficiency Control of a Stator Flux-Oriented Induction Motor Drive (유도전동기 고정자자속기준제어의 개선된 최대효율제어)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.58-63
    • /
    • 2008
  • A fast maximum efficiency control scheme of a stator flux-oriented control of an induction motor is proposed. Three inputs of given three magnetic fluxes are calculated. Then magnetic flux for minimum input is calculated by quadratic interpolation method and maximum efficiency control is fulfilled with the calculated magnetic flux for minimum input. Simulation results verify the effectiveness of the scheme.

Selection of Optimal Stator Flux Reference of Stator Flux-Oriented Induction Machine Drive in Field Weakening Region (약계자영역에서 유도전동기의 고정자자속 기준 제어를 위한 최적 기준자속 선정방법)

  • Sin, Myeong-Ho;Hyeon, Dong-Seok;Jo, Sun-Bong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.494-499
    • /
    • 2000
  • In a conventional stator flux-oriented(SFO) induction machine drive system, the field weakening method is to vary flux reference in proportion to the inverse of the rotor speed. This paper investigates that maximum torque capability cannot be obtained in the conventional system and proposes a new selection method of flux reference to obtain maximum torque capability over the field weakening region by considering voltage, torque, and current limits.

  • PDF

A New Direct Torque Control Scheme of an Induction Motor Using Duty Ratio Modulation

  • Park, Jeong-Woo;Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1223-1231
    • /
    • 2018
  • The direct torque control (DTC) scheme features a simple structure thanks to stator flux-oriented control. It has the advantage of robustness against motor parameters variation since only the stator resistance is involved in the control scheme. On the other hand, the disadvantage of DTC is large torque ripple. To reduce the torque ripple, many studies on DTC-space vector modulation (DTC-SVM) schemes, which modulate the duty ratio with a fixed switching cycle, have been proposed. However, there is the difficulty in obtaining the duty ratio for DTC-SVM. Hence, this paper proposes a new duty ratio selection and stator flux calculation methods for reducing torque ripple. Simulations and experiments were carried out to determine the validity of the proposed method. The proposed scheme has simplified the duty ratio command and achieved the same control performance as the conventional duty ratio modulation method without using the information of motor parameters.

Phasor Analysis of Sensorless Vector Control System Model for Induction Motor (유도전동기 센서리스 벡터제어 시스템 모델의 페이저 해석)

  • Lee, H.J.;Hwang, J.H.;Seong, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2015-2017
    • /
    • 1998
  • This paper deals with the design of a field oriented control system model for the high performance induction motor using Matlab with Simulink. The proposed control system model, which is not used the speed and flux sensor, contains IM model, Tranformation, Decoupling, FFOC(Field Flux Orientation Controller), Torque calculator and PI Controller to control speed, torque. Results present the stator and rotor flux phasor trajectory, the startup and transient response of speed, torque and stator current with field oriented control and the response to changes in reference speed with no load. This paper shows that the propose control system is more robust than other vector control system, and suggest the enchanced model, using Matlab with Simulink for the high performance in induction motor control.

  • PDF

Optimized Stator Flux Oriented Control of IM using Adaptive Speed Estimator (적응 속도추정기를 이용한 유도전동기의 최적 고정자 자속 기준제어)

  • 정인화;신명호;변철웅;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.161-165
    • /
    • 1997
  • For high performance ac drives, the speed sensorless vector control and the stator flux orientation concept have received increasing attention. This paper presents a new method of estimation the speed of AC induction machine(IM). To improve the speed estimation characteristics, accurate stator resistance variation is considered. The effectiveness of the proposed method is verified computer simulation.

  • PDF

A Study on Fast Maximum Efficiency Control of Stator-Flux-oriented Induction Motor Drives

  • Shin, Myoung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.626-633
    • /
    • 2011
  • This paper presents a novel maximum efficiency control scheme for convergence improvement in stator-flux-oriented induction motor drives. Three input powers are calculated at three different flux levels, respectively. A quadratic curve is obtained using the quadratic interpolation method using the three points. The flux level at the lowest point of the interpolated curve is calculated, which is not the real minimum input power of the motor, but an estimated one. Hence, the quadratic interpolations are repeated with three new points chosen using the selection method for new points for refitting until the convergence criteria are satisfied. The proposed method is verified by simulation results.

Feed-Forward Approach in Stator-Flux-Oriented Direct Torque Control of Induction Motor with Space Vector Pulse-Width Modulation

  • Kizilkaya, Muhterem Ozgur;Gulez, Kayhan
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.994-1003
    • /
    • 2016
  • Two major obstacles in the utilization of electrical vehicles are their price and range. The collaboration of direct torque control (DTC) with induction motor (IM) is preferred for its low cost, easy implementation, and parameter independency. However, in terms of edges, the method has drawbacks, such as variable switching frequency and undesired current harmonic distortion. These drawbacks result in acoustic noise, reduced efficiency, and electromagnetic interference. A feed-forward approach for stator-flux-oriented DTC with space vector pulse-width modulation is presented in in this paper. The outcome of the proposed method is low current harmonic distortion with fixed switching frequency while preserving the torque performance and simple application feature of basic DTC. The method is applicable to existing and forthcoming IM drive systems via software adaptation. The validity of the proposed method is confirmed by simulation and experimental results.

A Study on Induction Motor Drives by the Direct Torque Control Technique (직접토크 제어방식을 이용한 유도전동기 구동에 관한 연구)

  • 안용상;김연충;이정호;원충연;송호범
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.394-398
    • /
    • 1999
  • Direct Torque Control method for an Induction Motor is presented which is quite different from field-oriented control. It carries out a precise and quick control of the stator flux and electromagnetic torque of an IM without calling for coordinate transformation, speed measurement, and stator current control. In principle, moreover, DTC operation requires only the knowledge of the stator resistance.

  • PDF

Damping for Wind Turbine Electrically Excited Synchronous Generators

  • Tianyu, Wang;Guojie, Li;Yu, Zhang;Chen, Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.801-809
    • /
    • 2016
  • The electrically excited synchronous generator (EESG) is applied in wind turbine systems recently. In an EESG control system, electrical torque is affected by stator flux and rotor current. So the control system is more complicated than that of the permanent-magnet synchronous generator (PMSG). Thus, the higher demanding of the control system is required especially in case of wind turbine mechanical resonance. In this paper, the mechanism of rotor speed resonant phenomenon is introduced from the viewpoint of mechanics firstly, and the characteristics of an effective damping torque are illustrated through system eigenvalues analysis. Considering the variables are tightly coupled, the four-order small signal equation for torque is derived considering stator and rotor control systems with regulators, and the bode plot of the closed loop transfer function is analyzed. According to the four-order mathematical equation, the stator flux, stator current, and electrical torque responses are derived by torque reference step and ramp in MATLAB from a pure mathematical deduction, which is identical with the responses in PSCAD/EMTDC simulation results. At last, the simulation studies are carried out in PSCAD software package to verify the resonant damping control strategy used in the EESG wind turbine system.

Adaptive Backstepping Control of Induction Motors with Uncertainties Using a Sliding Mode Adaptive flux Observer (슬라이딩모드 적응 자속관측기를 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑제어)

  • 이은욱;양해원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.154-160
    • /
    • 2004
  • In this paper, a combined field orientation and adaptive backstepping approach using a sliding mode adaptive flux observer, is proposed for the control of induction motor In order to achieve the speed regulation with the consideration of improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer based on a fixed stator frame model and mechanical lumped uncertainty such as inertia moment, load torque disturbance, friction compensated by the adaptive backstepping based on a field-oriented model. Simulation results are provided to verify the effectiveness of the proposed approach.