• Title/Summary/Keyword: Statistics Model

Search Result 5,326, Processing Time 0.032 seconds

Families of Distributions Arising from Distributions of Ordered Data

  • Ahmadi, Mosayeb;Razmkhah, M.;Mohtashami Borzadaran, G.R.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.105-120
    • /
    • 2015
  • A large family of distributions arising from distributions of ordered data is proposed which contains other models studied in the literature. This extension subsume many cases of weighted random variables such as order statistics, records, k-records and many others in variety. Such a distribution can be used for modeling data which are not identical in distribution. Some properties of the theoretical model such as moment, mean deviation, entropy criteria, symmetry and unimodality are derived. The proposed model also studies the problem of parameter estimation and derives maximum likelihood estimators in a weighted gamma distribution. Finally, it will be shown that the proposed model is the best among the previously introduced distributions for modeling a real data set.

Asymptotic Relative Efficiencies of the Nonparametric Relative Risk Estimators for the Two Sample Proportional Hazard Model

  • Cho, Kil-Ho;Lee, In-Suk;Choi, Jeen-Kap;Jeong, Seong-Hwa;Choi, Dal-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 1999
  • In this paper, we summarize some relative risk estimators under the two sample model with proportional hazard and examine the relative efficiencies of the nonparametric estimators relative to the maximum likelihood estimator of a parametric survival function under random censoring model by comparing their asymptotic variances.

  • PDF

A new extension of Lindley distribution: modified validation test, characterizations and different methods of estimation

  • Ibrahim, Mohamed;Yadav, Abhimanyu Singh;Yousof, Haitham M.;Goual, Hafida;Hamedani, G.G.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.473-495
    • /
    • 2019
  • In this paper, a new extension of Lindley distribution has been introduced. Certain characterizations based on truncated moments, hazard and reverse hazard function, conditional expectation of the proposed distribution are presented. Besides, these characterizations, other statistical/mathematical properties of the proposed model are also discussed. The estimation of the parameters is performed through different classical methods of estimation. Bayes estimation is computed under gamma informative prior under the squared error loss function. The performances of all estimation methods are studied via Monte Carlo simulations in mean square error sense. The potential of the proposed model is analyzed through two data sets. A modified goodness-of-fit test using the Nikulin-Rao-Robson statistic test is investigated via two examples and is observed that the new extension might be used as an alternative lifetime model.

Robust extreme quantile estimation for Pareto-type tails through an exponential regression model

  • Richard Minkah;Tertius de Wet;Abhik Ghosh;Haitham M. Yousof
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.531-550
    • /
    • 2023
  • The estimation of extreme quantiles is one of the main objectives of statistics of extremes (which deals with the estimation of rare events). In this paper, a robust estimator of extreme quantile of a heavy-tailed distribution is considered. The estimator is obtained through the minimum density power divergence criterion on an exponential regression model. The proposed estimator was compared with two estimators of extreme quantiles in the literature in a simulation study. The results show that the proposed estimator is stable to the choice of the number of top order statistics and show lesser bias and mean square error compared to the existing extreme quantile estimators. Practical application of the proposed estimator is illustrated with data from the pedochemical and insurance industries.

A Bayesian cure rate model with dispersion induced by discrete frailty

  • Cancho, Vicente G.;Zavaleta, Katherine E.C.;Macera, Marcia A.C.;Suzuki, Adriano K.;Louzada, Francisco
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.471-488
    • /
    • 2018
  • In this paper, we propose extending proportional hazards frailty models to allow a discrete distribution for the frailty variable. Having zero frailty can be interpreted as being immune or cured. Thus, we develop a new survival model induced by discrete frailty with zero-inflated power series distribution, which can account for overdispersion. This proposal also allows for a realistic description of non-risk individuals, since individuals cured due to intrinsic factors (immunes) are modeled by a deterministic fraction of zero-risk while those cured due to an intervention are modeled by a random fraction. We put the proposed model in a Bayesian framework and use a Markov chain Monte Carlo algorithm for the computation of posterior distribution. A simulation study is conducted to assess the proposed model and the computation algorithm. We also discuss model selection based on pseudo-Bayes factors as well as developing case influence diagnostics for the joint posterior distribution through ${\psi}-divergence$ measures. The motivating cutaneous melanoma data is analyzed for illustration purposes.

Comparison of time series predictions for maximum electric power demand (최대 전력수요 예측을 위한 시계열모형 비교)

  • Kwon, Sukhui;Kim, Jaehoon;Sohn, SeokMan;Lee, SungDuck
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.623-632
    • /
    • 2021
  • Through this study, we studied how to consider environment variables (such as temperatures, weekend, holiday) closely related to electricity demand, and how to consider the characteristics of Korea electricity demand. In order to conduct this study, Smoothing method, Seasonal ARIMA model and regression model with AR-GARCH errors are compared with mean absolute error criteria. The performance comparison results of the model showed that the predictive method using AR-GARCH error regression model with environment variables had the best predictive power.

Comparison of Interval Estimations for P(X

  • Lee, In-Suk;Cho, Jang-Sik;Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.93-104
    • /
    • 1996
  • In this paper, Marshall and Olkin's bivariate exponential distribution is assumed for stress and strength model. We derive the asymptotic distributions and construct some approximate confidence intervals for P(X

  • PDF

A Note on Asymptotic Relative Efficiency of the Nonparametric Reliability Estimation for the Proportional Hazards Model

  • Cha, Young-Joon;Lee, Jae-Man;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.173-177
    • /
    • 1998
  • This paper presents the asymptotic relative efficiency of the nonparametric estimator relative to the parametric maximum likelihood estimator of the reliability function under the proportional hazards model of random censorship. Also we examine the efficiency loss due to censoring proportions and misson times.

  • PDF

Imputation using response probabilities

  • Kim, Jae-Kwang;Park, Hyeon-Ah;Jeon, Jong-Woo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.207-212
    • /
    • 2003
  • In this paper, we propose a class of imputed estimators using response probability. The proposed estimator can be justified under the response probability model and thus is robust against the failure of the assumed imputation model. We also propose a variance estimator that is justified under the response probability model.

  • PDF

Ljung-Box Test in Unit Root AR-ARCH Model

  • Kim, Eunhee;Ha, Jeongcheol;Jeon, Youngsook;Lee, Sangyeol
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.323-327
    • /
    • 2004
  • In this paper, we investigate the limiting distribution of the Ljung-Box test statistic in the unit root AR models with ARCH errors. We show that the limiting distribution is approximately chi-square distribution with the degrees of freedom only depending on the number of autocorrelation lags appearing in the test. Some simulation results are provided for illustration.