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ABSTRACT

In this paper, we propose a class of imputed estimators using response probability. The
proposed estimator can be justified under the response probability model and thus is robust
against the failure of the assumed imputation model. We also propose a variance estimator

that is justified under the response probability model.
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1. Introduction

Imputation is a commonly used method of compensating for item nonresponse in sample
surveys. Many imputation methods such as ratio imputation or regression imputation use
auxiliary information that is observed throughout the sample. Such imputation methods
require assumptions about the distribution of the study variable. Imputation model refers
to the assumption about the variables collected in the survey and the relationship among
these variables. Often the imputation model is quite difficult to verify from a single data set
because of the missing value of the study variable. Another approach, called response prob-
ability model approach, is also commonly adopted in the analysis of missing data. Response
probability model refers to the assumptions about the probability of obtaining a response
from the sampled unit for the item. One of the commonly used response probability model
is the cell response model, where the responses are assumed to be uniform within the im-
putation cell. Rao and Shao (1992) and Shao and Steel (1999) discuss inferences of the
imputed estimator under the cell response model. However, for the other response models
such as logistic response model, imputation methods incorporating the response probability
model are relatively underdeveloped, although analyses incorporating the response probabil-
ity model are quite common in the non-imputation context. Examples include Rosenbaum

(1987), Robins et al (1994), and Lipsitz et al (1999).
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The purpose of this paper is to provide an imputation methodology of combining the
imputation model and the response model. In section 2, an imputation method is proposed
that can be justified under the two approaches. Thus, the resulting estimator is “doubly”
protected against the failure of the assumed model. In Section 3, the proposed method is
applied to the ratio imputation model. In Section 4, a variance estimator that is justified

under the response model is proposed. Concluding remarks are made in Section 5.
2. Basic setup

Let 6, be an estimator of the population parameter 6y based on the sample and.of the
form 6, = St w;Y;, where w; is the sampling weight and Y; is the study variable of the

i-th element in the sample of size n. We assume that

Ep (6n) = O (1)
where the expectation is taken with respect to the sampling mechanism. Under nonresponse,
we define the response indicator function of Y;

1 Y; responds .
R = ) 1:1727"'1’”’7
0 Y; does not respond

and its expectation m; = Pr(R; = 1]1).
If we define Y;* to be the imputed value of Y;, then the estimator of 6 based on the

imputed values can be written

01 =§";w,. {RY: + (1~ R) Y7} (2)

i=1

The imputed values usually satisfies
EC(YZ*)ZEC(Yl)i i:1)2)"'1n) (3)

where the expectation in (3) is with respect to the conditional distribution of Y given the
respondent status. The model involved in (3) is called imputation model. Assumption (3)

implies E (91 - 9n) =0, and so, by (1),
EpE, (é, - oN) =0. (4)

The unbiasedness of the imputed estimator in (2) depends on assumption (3). If assumption

(3) fails, then we cannot guarantee the unbiasedness of the imputed estimator.
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If we know the response probability m;, then we can use the response probability to relax

the assumption (3). The proposed estimator is

n n
010 = Zwiyi* + Zwiﬁi_lRi (Y;-Y"). (5)
i=1 i=1
Note that
Ora—6n = > wi(a['Ri-1)(Yi-Y;). (6)

i=1
If E(ni—lRi) = 1, under the assumptions discussed in Section 3, the right side of (6) is
asymptotically negligible. Thus, the proposed estimator in (5) is approximately unbiased

for 8y under the response mechanism, regardless of whether the imputation model holds or

not.

Note that the estimator in (5) can be written as that in (2) if and only if
n
Zwi (-1 R (Yi-Y) =0 ()
=1

Hence, condition (7) suggests a way of constructing an imputed estimator. In the next
section, we illustrate how to construct an imputed estimator satistying (7) under the ratio

imputation model.
3. Application to ratio imputation model

Suppose that we have a completely observed auxiliary variable z; for the i-th unit in the

sample. A commonly used imputation model is the ratio imputation model
E (V) = ziv. (8

Under the ratio imputation model, the imputed value of Y; takes the form of Y;* = z;4,

where ¥ is to be determined. Often, for example in Rao (1996), the choice of ¥ was

n -l p
’7: {Z’wiRiiL‘i} ZwiRiYi~ (9)
i=1 i=1

In our new approach, a choice of 4* satisfying (7) is

n -1 5
A* = {Zw1 (ﬂ’i_l —1) Riiti} Zwi (71','_1_1) R;Y;, (10)
i=1 i=1

which reduces to (9) under the uniform response mechanism, where the #; are a constant.

Thus, the imputed estimator §; using 4* in (10) is algebraically equivalent to 614 in (5).
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The following theorem shows that the the proposed estimator is asymptotically unbiased
without assuming the imputation model. The reference distribution in (15) and (16) is the

joint distribution of the sampling mechanism and the response mechanism.

Theorem 3.1 Let 6, be a design unbiased complete sample estimator for the population
parameter Q. Assume a sequence of finite populations with finite 4-th moments of (z;,Y:)

as defined in Isaki and Fuller (1982). Assume the sampling mechanism satisfy
K < maxnw; < K, (11)
1

and
nVar (én) > K3 (12)

for some nonnegative constants K; ,K2, and K3, uniformly in n. Assume that response

mechanism satisfy
Ky <7, (13)

for some nonnegative constants K4, and
Pr(Ri=1,R;j=1)=Pr(R;=1)Pr(R; =1), Vi#j. (14)
Then, the imputed estimator of the form (2) with Y;* = ;%" satisfy
E (é;d) =0y +o0 (n_1/2) (15)

and
+o(n™h, (16)

v (bia) = Vo (6:) +Ep

>owk (- 1) (Y —2r)
i=1

where ¥9 = Epr (%*) and the subscript D denote the distribution over the sampling mecha-

nism.
4. Variance Estimation

We now consider the variance estimation of the imputed estimator satisfying (7) under
the response model approach. We adopt replication method such as jackknife for variance
estimation. Replication variance estimator is popular because it can be easily extended to
the variance estimation for non-linear statistics.

Under complete response, let a replication variance estimator be

L 2
V=Y o (é,g’c) - én) , (17)

k=1
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where ésf) is the k-th estimate of 8 based on the observations included in the k-th replicate,
L is the number of replicates, and ¢y, is a factor associated with replicate k determined by
the replication method. When the original estimator 'én is a linear estimator , the k-th
replicate of 6,, can be written o) = >, wfk)Yi, where wgk) denotes the replicate weight
for the i-th unit of the k-th replication.

Under nonresponse, we propose a variance estimator for the imputed estimator of the

form in (5) using the replication method in (17). The proposed replication variance estimator

is

L N2
Vd = ch ((9?2) b Hld) ) (18)
k=1
where n N
39 = S uPY® 4 3 uar R (Y- 1) (19)
i=1 i=1

and ;4 is defined in (5). The Yi*(k) is a replicated version of Y* satisfying
n
Sl (it =) R (Y- @) =0, (20)
i=1

Note that condition (20) for the replicates is similar to condition (7) for the original estima-
tor.
In the following theorem, we show the consistency of the proposed jackknife variance

estimator under the response probability model.

Theorem 4.1 Let the assumptions of Theorem 3.1 hold. Let the replication variance.

estimator for the complete sample be of the form (17). Assume that
max c'=0(L) (21)
and
. ~ 212 12
Ep [ck(eﬂﬂ-—e) } < ch—z{vz,(a)] (22)
for all k and for some constant Cy. Assume
. . 2
Ep { [V/V(a) - 1] } = o(l) (23)

for any y with bounded fourth moments. We also asswme that the sampling fraction is
negligible.
N-'n=0(1). (24)
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Then the proposed jackknife variance estimator defined in (18) satisfies

n{Vd—V(éM)} =o0,(1). (25)

5. Concluding remarks

A class of imputed estimator using the response probability is proposed. The proposed
estimator are asymptotically unbiased even under the failure of the assumed imputation
model, as long as the assumed response probabilities are true. Variance estimation using
the replication method is also proposed and its asymptotic properties are presented. The
proposed estimator also shows good finite sample properties in the simulation. Asymp-
totic properties of the imputed estimator using the estimated response probability are not

discussed here and will be presented somewhere else.
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