• Title/Summary/Keyword: Statistical hypothesis

Search Result 797, Processing Time 0.028 seconds

Application of Logit Model in Qualitative Dependent Variables (로짓모형을 이용한 질적 종속변수의 분석)

  • Lee, Kil-Soon;Yu, Wann
    • Journal of Families and Better Life
    • /
    • v.10 no.1 s.19
    • /
    • pp.131-138
    • /
    • 1992
  • Regression analysis has become a standard statistical tool in the behavioral science. Because of its widespread popularity. regression has been often misused. Such is the case when the dependent variable is a qualitative measure rather than a continuous, interval measure. Regression estimates with a qualitative dependent variable does not meet the assumptions underlying regression. It can lead to serious errors in the standard statistical inference. Logit model is recommended as alternatives to the regression model for qualitative dependent variables. Researchers can employ this model to measure the relationship between independent variables and qualitative dependent variables without assuming that logit model was derived from probabilistic choice theory. Coefficients in logit model are typically estimated by the method of Maximum Likelihood Estimation in contrast to ordinary regression model which estimated by the method of Least Squares Estimation. Goodness of fit in logit model is based on the likelihood ratio statistics and the t-statistics is used for testing the null hypothesis.

  • PDF

QUALITY IMPROVEMENT OF VEHICLE DRIFT USING STATISTICAL SIX SIGMA TOOLS

  • PARK T. W.;SOHN H. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.625-633
    • /
    • 2005
  • Vehicle drift was reduced using statistical six sigma tools. The study was performed through four steps: M (measure), A (analyze), I (improve), and C (control). Step M measured the main factors which were derived from a fishbone diagram. The measurement system capabilities were analyzed and improved before measurement. Step A analyzed critical problems by examining the process capability and control chart derived from the measured values. Step I analyzed the influence of the main factors on vehicle drift using DOE (design of experiment) to derive the CTQ (critical to quality). The tire conicity and toe angle difference proved to be CTQ. This information enabled the manufacturing process related with the CTQ to be improved. The respective toe angle tolerance for the adjustment process was obtained using the Monte Carlo simulation. Step C verified and controlled the improved results through hypothesis testing and Monte Carlo simulation.

INDEPENDENCE TEST FOR BIVARIATE CENSORED DATA UNDER UNIVARIATE CENSORSHIP

  • Kim, Jin-Heum;Cai, Jian-Wen
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.163-174
    • /
    • 2003
  • We propose a test for independence of bivariate censored data under univariate censorship. To do this, we first introduce a process defined by the difference between bivariate survival function estimator proposed by Lin and Ying (1993) and the product of the product-limit estimators (Kaplan and Meier, 1958) for the marginal survival functions, and derive its asymptotic properties under the null hypothesis of independence. We propose a Cramer-von Mises-type test procedure based on the process . We conduct simulation studies to investigate the finite-sample performance of the proposed test and illustrate the proposed test with a real example.

Testing Exponentiality of Kullback-Leibler Information Function based on a Step Stress Accelerated Life Test

  • Park Byung Gu;Yoon Sang Chul
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.235-240
    • /
    • 2000
  • In this paper a test of fit for exponentiality and we propose the estimator of Kullback-Leibler Information functions using the data from accelerated life tests. This acceleration model is assumed to be a tampered random variable model. The procedure is applicable when the exponential parameter based on the data from accelerated life tests is or is not specified under null hypothesis. Using Simulations, the power of the proposed test based on use condition of accelerated life test under alternatives is compared with that of other standard tests in the small sample.

  • PDF

A Kolmogorov-Smirnov-Type Test for Independence of Bivariate Failure Time Data Under Independent Censoring

  • Kim, Jingeum
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.469-478
    • /
    • 1999
  • We propose a Kolmogorov-Smirnov-type test for independence of paired failure times in the presence of independent censoring times. This independent censoring mechanism is often assumed in case-control studies. To do this end, we first introduce a process defined as the difference between the bivariate survival function estimator proposed by Wang and Wells (1997) and the product of the product-limit estimators (Kaplan and Meier (1958)) for the marginal survival functions. Then, we derive its asymptotic properties under the null hypothesis of independence. Finally, we assess the performance of the proposed test by simulations, and illustrate the proposed methodology with a dataset for remission times of 21 pairs of leukemia patients taken from Oakes(1982).

  • PDF

Estimation of Jump Points in Nonparametric Regression

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.899-908
    • /
    • 2008
  • If the regression function has jump points, nonparametric estimation method based on local smoothing is not statistically consistent. Therefore, when we estimate regression function, it is quite important to know whether it is reasonable to assume that regression function is continuous. If the regression function appears to have jump points, then we should estimate first the location of jump points. In this paper, we propose a procedure which can do both the testing hypothesis of discontinuity of regression function and the estimation of the number and the location of jump points simultaneously. The performance of the proposed method is evaluated through a simulation study. We also apply the procedure to real data sets as examples.

Robust Unit Root Tests with an Innovation Variance Break

  • Oh, Yu-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.177-182
    • /
    • 2012
  • A structural break in the level as well as in the innovation variance has often been exhibited in economic time series. In this paper we propose robust unit root tests based on a sign-type test statistic when a time series has a shift in its level and the corresponding volatility. The proposed tests are robust to a wide class of partially stationary processes with heavy-tailed errors, and have an exact binomial null distribution. Our tests are not affected by the size or location of the break. We set the structural break under the null and the alternative hypotheses to relieve a possible vagueness in interpreting test results in empirical work. The null hypothesis implies a unit root process with level shifts and the alternative connotes a stationary process with level shifts. The Monte Carlo simulation shows that our tests have stable size than the OLSE based tests.

The Sequential Testing of Multiple Outliers in Linear Regression

  • Park, Jinpyo;Park, Heechang
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.337-346
    • /
    • 2001
  • In this paper we consider the problem of identifying and testing the outliers in linear regression. first we consider the problem for testing the null hypothesis of no outliers. The test based on the ratio of two scale estimates is proposed. We show the asymptotic distribution of the test statistic by Monte Carlo simulation and investigate its properties. Next we consider the problem of identifying the outliers. A forward sequential procedure based on the suggested test is proposed and shown to perform fairly well. The forward sequential procedure is unaffected by masking and swamping effects because the test statistic is based on robust estimate.

  • PDF

Binary Segmentation Procedure for Detecting Change Points in a DNA Sequence

  • Yang Tae Young;Kim Jeongjin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.139-147
    • /
    • 2005
  • It is interesting to locate homogeneous segments within a DNA sequence. Suppose that the DNA sequence has segments within which the observations follow the same residue frequency distribution, and between which observations have different distributions. In this setting, change points correspond to the end points of these segments. This article explores the use of a binary segmentation procedure in detecting the change points in the DNA sequence. The change points are determined using a sequence of nested hypothesis tests of whether a change point exists. At each test, we compare no change-point model with a single change-point model by using the Bayesian information criterion. Thus, the method circumvents the computational complexity one would normally face in problems with an unknown number of change points. We illustrate the procedure by analyzing the genome of the bacteriophage lambda.

Statistical methods for Edge Detection in Images (영상에서 에지 검출을 위한 통계적 방법)

  • 임동훈;박은희
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.515-523
    • /
    • 2000
  • In this paper we detect edges using stutistical methods of the change-point problem. For this, we perform the hypothesis testing for differences in gray levels to see whether any $n\timesn$ subimage contains edge segments. The proposed method based on the twosample Kolmogorov-Smirnov test is introduced and the likelihood ratio test and the \VolfeSchechtman test for change-point problem arc also applied for edge detection. \Ve perform the experimental study to assess the performance of these methods in both noisy and uncontaminated sample noises.

  • PDF