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A Kolmogorov-Smirnov-Type Test for Independence
of Bivariate Failure Time Data Under Independent
Censoring

Jinheum Kim!

ABsSTRACT

We propose a Kolmogorov-Smirnov-type test for independence of paired
failure times in the presence of independent censoring times. This indepen-
dent censoring mechanism is often assumed in case-control studies. To do
this end, we first introduce a process defined as the difference between the
bivariate survival function estimator proposed by Wang and Wells (1997)
and the product of the product-limit estimators (Kaplan and Meler (1958))
for the marginal survival functions. Then, we derive its asymptotic proper-
ties under the null hypothesis of independence. Finally, we assess the per-
formance of the proposed test by simulations, and illustrate the proposed
methodology with a dataset for remission times of 21 pairs of leukemia pa-
tients taken from Oakes (1982).

Keywords: Bivariate Survival Function; Independent Censoring; Independence
Test; Kolmogorov-Smirnov Test; Product-Limit Estimator.

1. INTRODUCTION

In biomedical studies which deal with paired failure times, it may be useful
to test whether they are independent or not because there exists natural or ar-
tificial pairing such that they may be correlated. Several approaches have becn
developed to test independence between failure times in bivariate failure time
data. Oakes (1982) proposed a test based on an extension of Kendall’s coeffi-
cient of concordance to censored data. Cuzick (1982) suggested a test based on
the generalized ranks with calculations of the loss of efficiencies arising from the
incorrect model specification in a particular class of models. Dabrowska (1986)
studied linear rank statistics that generalize the Spearman rank correlation and
the log-rank correlation in the presence of censoring. Pones (1986) and Pones and
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Turckheim (1991) proposed tests based on the difference between an estimator
of joint cumulative hazard function and the product of the marginal cumulative
hazard estimates. Shih and Louis (1996) proposed tests based on the covariance
process of the martingale residuals for the marginal distributions.

In the next section we introduce a process defined as the difference between
the bivariate survival function estimator proposed by Wang and Wells (1997)
and the product of the product-limit estimators (Kaplan and Meier (1958)) for
the marginal survival functions. We derive its asymptotic properties under the
null hypothesis of independence and propose a Kolmogorov-Smirnov-type test
for testing of independence of the bivariate failure time data under independent
censoring mechanism. Finally, simulation studies are carried out to investigate
the small sample performance of the proposed test, and we also illustrate the
proposed test with a dataset for remission times of 21 pairs of leukemia, patients
taken from Oakes (1982).

2. A KOLMOGOROV-SMIRNOV-TYPE INDEPENDENCE
TEST

Let (X;,Y;)(i = 1,...,n) be n independent and identically distributed pairs of
failure times with continuous bivariate survival function F(z,y) = PX >zY >
y) and let (C1i, C2)(i = 1,...,n) be an independent sample of n censoring times
with survival function G(z,y) = P(Cy > z,Cy > y). Let F(-) and G;(-)(j = 1,2)
denote the marginal survival functions of X, Y, C, and C?, respectively. Assume
that (X;,Y;) are independent of (Chi; Cy;) for all 4, and also that C; and Cs
are independent. In case-control studies, it may be reasonable to assume that
the patients in the case and control groups are subject to such an independent
censoring mechanism. We observe (X;, ¥;, 62, 69)(i=1,...,n), where

Xi=X; NCui, i = Y; ACos, 67 = I(X; < Oi), 6% = I(Y; < Co).

Here and in the sequel, I(-) denotes the indicator function and a A b — min(a, b).
Let H(z,y) = P(X > x,Y > y) be the bivariate survival function of (X:, Vi) (i =
.,n), and let H;(:)(7 = 1,2) be the marginal survival functions of X and Y,
respectively.
Noting that F(z,y) can be decomposed as

F(:c,y) =
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from the assumption of independence between the paired failure times and the
censoring times and G(z,y) = G1(2)G2(y) under independent censoring, Wang
and Wells (1997) proposed a bivariate survival function estimator of F' given by

- j_:[ z,y
F(m,y) = “:“(—n)-“,
G1(z)G2(y)
where H(z,y) = n~1 30, I(X; > 2,Y; > y), and G'j(j = 1,2) are the product-

limit estimators for G; based on {(f(i, 1-46F),2=1,...,n} and {(f’;, 1-69),1i =
1,...,n}, respectively.

(2.1)

To make a test of independence between X and Y, we compare the bivariate
estimator F in (2.1) of F with its estimator 7} F, under the hypothesis of inde-
pendence, where }31 (j = 1,2) are the product limit estimators for I; based on
{(X;,68),i=1,...,n} and {(¥;,8Y),i = 1,...,n}, respectively.

Define a process Z at (z,y) on [0, 7] x [0, 72] as

Z(z,y) = n2{F(z,9) - (=) B )},
where (11, 72) € RT x R satisfies H(ry, ) > 0.

Theorem 2.1. For (z,y) € [0,71] % [0,72] such that H(z,y) > 0, the process
Z(z,y) converges weakly to a zero-mean Gaussian process Z(z,y) = U(z,y) —
Fy(y)Ur(z) — Fi(z)Ua(y), if X and Y are independent on the observed rectan-
gle [0,71] % [0, 2], otherwise sup y)efo,m]x0,]|Z (2, y)| tends to infinity, where
U(z,y), Ui(z), and Us(y) are zero-mean Goussian processes.

Proof: We first write Z(z,y) as

Z(z,y) = ni{F(z,y) - F(z,9)} —n3{Fi(e) - Fi@)HBY) - B)}
- By(y)n3 {Fi(z) - Fi(2)} — Fi(e)n? {By(y) - Fa(y)}
+ n3{F(z,y) — Fi(z)Fa(y)}.

By the result of Theorem 4 in Wang and Wells (1997), the first term converges
weakly to a zero-mean Gaussian process U(z,y). Also, by the weak convergence
of the product-limit estimator, the second term converges in probability to zero
uniformly on [0, 71] % [0, 72], and the third and the fourth terms converge weakly to
zero-mean Gaussian processes Fo(y)Ui(z), Fi(z)Ua(y), respectively. Moreover,
F(z,y) = Fi(z)Fa(y) if X is independent of Y. Thus, the last term converges to
zero in probability umformly on [0,71] % [0,72]. If X and Y are not independent,
SUD(5.4)€[0,1]x[0,75] n2 |F(z,y) — F1(z)Fa(y)| tends to infinity as n goes to infinity,

. 1
leading to SUP(g5)€(0,71]%[0,72) T2 |Z(z,y)| = . =
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Define the processes as follows:
Alz,y) =n2{H(z,y) — H(z,y)},
Bj(t) = n® {B;(t) — H;(0)} (i =1,2),
Ci(t) =n3 {F;(t) - F;()} (5 =1,2),

where H (4 =1,2) are the empirical survival functions of X and ¥, respectively.

—

Theorem 2.2. If X is independent of Y, for (z,y) € [0,71] x [0, 73] such that
H(z,y) > 0, the variance of the process Z(z,y) equals to

_ _ 1 1 1 H(z,y)
o¥(z,y) = {Fi(2) Fa(w))? { R R TR A 1,

and o®(z,y) can be consistently estimated by

G2z y) = {F () Fy ()12 Al _Al _"1 AF(I’Ay) &}.
(z,y) = {F1(z)F2(y)} {H(%y) B (2) Hz(y)—l_zHl(fE)Hz(y) :

Proof: Let Avar(-) and Acov(:,-) denote the asymptotic variance of (-) and
the asymptotic covariance of (-,-). By using the arguments of Wang and Wells
(1997) and some elementary probability arguments, under the null hypothesis of
independence of X and Y, it can be easily shown that

avar(Cy(0) = F0) [ S (1=1.2) 2.2
Aeov(B,(0,C,(0)} = O H0) [ B (=1, 2.3)
Acov(Ae,). Cu(a)} = A (@) H () [~ 50, (2.4
Acor[ Az 1), Co)} = Paty)Ha.y) [ i) (2.5)

Acov{B1(z), Ca(y)} = Acov{B2(y), Ci(z)} = Acov{Ci(z),Ca(y)} = 0, (2.6)

where Aj(du) = —dF;(u)/F;(u)(j = 1,2) are marginal hazard functions of X and
Y, respectively. Specially, it is given in Appendix for details of (2.6). Using the
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results in (2.2)-(2.6) and the fact from Wang and Wells (1997) that n%{}%(:c, y) —
F(z,y)} is asymptotically equivalent to F(z,vy){H ! (z,y)A(z,y) — H;  (z) By (z)
+ F7Y2)Ci(z) — Hy Hy)Ba(y) + F5 H(y)Ca(y)}, we get the following:

var{U; (t / o d“ =1,2), (2.7)
cov{Ui(z),Uz(y)} =0, (2.8)
cov{U(e,1), Ua(o)} = FE@)Bal) [ e 2.9)
cov{l(a.), Ua)} = Fi@)FR) [ ). (2.10)

Therefore, the variance o?(z,y) of the process Z(z,y) directly holds from the
above results in (2.7)-(2.10) and the equation (3.11) of var{U(z,y)} in Theorem
4 of Wang and Wells (1997), which, from (2.6) under the null hypothesis of
independence of X and Y, reduces to
1 1 H(z,y)

var{U(z,y)} = {Fi( 2{ - — +2 ’

Wt =tB@ROI\Fe )~ 5E  Be T R he)
z A1 (du) v A2 (du) }
o Hi(u) Jo Ha(u) )

In addition, the consistency of the variance estimator 6%(z,y) follows from the

+

consistency of the empirical survival function estimators Hand A i1=12). O

To test independence of paired failure time data under independent censoring,
we propose a Kolmogorov-Smirnov-type test given by

§= s |2y
(z,y)€{0,m1]%[0,72]

It follows from Theorem 2.1 that the test S is consistent for any alternative such
that SUP(z y)eo,r1]x[0,r2) [F(Z: ¥) — F1(z) Fa(y)| # 0. As is evident from o?(z,y), the
process Z(z,y) does not have an independent increment structure asymptotically.
Therefore, it is difficult to evaluate analytically the limiting distribution of the
test S. To overcome this difficulty, we introduce a bootstrap approach proposed
by Beran (1986) to our problem.
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Let d(a) be an upper a(0 < o < 1)-quantile of the distribution of $. The
d(e) can be approximated by generating the bootstrap distribution of S. To
do this we first obtain B bootstrap samples of size n ecach of whick consists of
{(Zf,D3),...,(Z},D})}, where Z = (X}, Y*)(i = 1,...,n) has the distribu-
tion Fy ® F, under the null hypothesis of independence, and each component
of D} = (C%;,C3,)(¢ = 1,...,n) has the distribution G'j (4 = 1,2), respectively.
To be specific, let {Z,,,u1 = 1,...,k,(< n)} be the ordered sequence of un-
censored distinct time points among the observed values {Z;,7 = 1,...,n}, and
{Pug,u2 = 1,...,1,(< n)} be that of uncensored distinct time points among
the observed values {f;,i = 1,...,n}. Also, let {Z,,c1 = 1,...,k.(< n)} be
the ordered sequence of censored distinct time points among {Z;,i = 1,...,n},
and {Je,,co = 1,...,0.(< n)} be that of censored distinct time points among
{#i,i = 1,...,n}. The Z} are generated from the distribution with mass of size
{F (Zuy) — FL(Fu )} X {Fo(fy) — Fo(fu,+)}] at each point (Zy,, fu,) (w1 =
L. kyy up =1,...,1y) on the grid {(Z1,41), (Z1,92), .- -, (&k., U1, )} Similarly,
the CYy; are generated from the distribution with mass {G1 (i) — G1(Fe,+)}
at each point ., (c; = 1,..., %), and the CF, from the distribution with mass
{Go(fey) — Go(Jep+)} at each point gg,(co; = 1,...,1.). Then, for each boot-
strap sample, we compute the bootstrap value of the test statistic S, say S*,
based on {(Xf, ¥y, d8%,6¢%), ..., (X3, YV;r, 62*,64%)}, where X} = X A CY,, ¥ =
Y NGy, 6% = I(X] < CF), and 67 = I(Y? < C3). Let 8%,...,8% be the
bootstrap values of S. The estimated value d(c) of d(a) is given as the upper
a-empirical quantile based on 57, ..., 5%. Thus, we reject the null hypothesis of
independence when the observed value of the test statistic S exceeds d(c) at o
significance level.

3. NUMERICAL STUDIES

A series of 1,000 simulations are carried out to investigate the small sam-
ple (n = 30,50) performance of the proposed test S. In each run of each sim-
ulation 500 bootstrap samples of size n are gemerated from the distribution
FekheG oG, to approximate the value d(e) by d(a), the upper a-empirical
quantile based on 500 bootstrap values of S under the null hypothesis of inde-
pendence. We generate the pairs of failure times with unit exponential marginal
distributions. The pairs of failure times are generated from two independent
exponential distributions with mean of 1 to study the size of the test &, and
generated from the Clayton (1978) bivariate exponential model
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F(z,y) = (e +¢b — 1)~

with 8 = 0.25 and generated from the Gumbel (1960) bivariate exponential
model

F(z,y) = e @1+ 0(1 —e ) (1 —e¥)}

with 8 = 1 using the algorithm discussed in Section 5 of Prentice and Cai (1992)
to study the power of the test S. The Clayton model with § = 0.25 represents
fairly strong positive dependence, while the Gumbel model with § = 1 represents
fairly weak positive dependence. These values are subject to censorship by means
of pairs of independent exponentially distributed censoring times with mean of
¢, where c is suitably chosen according to the desired censoring fraction. Hence
each failure time has a % marginal probability of being censored when ¢ equals
9, a % marginal probability when ¢ equals 2, and a % marginal probability when
¢ equals 1.

Table 3.1 presents the simulation results for the empirical sizes and powers of
the proposed test 5 under independent censoring. We note from the column of
independent model (A) that the sizes of the test S are, in general, controlled under
the light and heavy censorship, while the test S is conservative when the marginal
censoring fraction is one-third, but this drawback is overcome as the sample size
increases according to the results not reported here. When the assumed model
is the Clayton model (B) with strong dependency, the test S is fairly powerful.
This trend is remarkable as the sample size increase and as the censoring fraction
is low. However, as expected, when the assumed model is the Gumbel model (C)
with weak dependency, the test S is not as powerful as the Clayton model (B).

Table 3.1: Empirical Sizes of 1,000 Samples from Two Independent Exponential
Distributions with Mean of 1, and Empirical Powers of 1,000 Samples, Respec-
tively, from the Clayton Bivariate Exponential Distribution with @ = 0.25 and
from the Gumbel Bivariate Exponential Distribution with 6 =1

Model
(A) Independence (B) Clayton (C) Gumbel
% Censoring % Censoring % Censoring
n o« 10 33 50 10 33 50 10 33 50

30 .05 031 025 .046 960 258 .149 218 .072 .078
.10 080 .066 .105 983 497  .308 359 154 183
a0 .05 045 .027  .060 1.00 453 .169 365 .079  .100
.10 114 085  .115 1.00 .708 .329 548 184 191
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We illustrate the proposed test S with a dataset taken from Oakes (1982).
The dataset, given in Table 3.2, consists of remission times in weeks for 21 pairs
of leukemia patients treated with 6-mercaptopurine (6-MP) or placebo. The test
statistic S equals 0.3983, and the p—value corresponding to the observed value,
based on 10,000 bootstrap samples, is approximately 0.1340. This indicates no
evidence against independence of remission times of leukemia patients between
treatment and control groups.

Table 3.2: Remission Times for 21 Pairs of Leukemia Patients Treated with 6-MP
or Placebo. The Sign + Indicates the Censored Observations
Pair 1 2 3 4 5 6 7 8 9 10 11
Placebo 1 22 3 12 8 17 2 11 8 12 2
6-MP 10 7 324+ 23 22 6 16 34+ 32+ 25+ 11+
Pair 12 13 14 15 16 17 18 19 20 21
Placebo 5 4 15 8 23 5 11 4 1 8
6-MP 20+ 19+ 6 17+ 35+ 6 13 9+ 6+ 10+

APPENDIX

DERIVATION OF (2.6). To show Acov{Ci(z),C2(y)} = 0, it suffices to show
that the integrand of the equation Acov{C(z), C2(y)} in Appendix of Wang and
Wells (1997),

H{(s,t)A11(ds,dt) — H(ds,t)Aa(dt) — H(s,dt)A1(ds) + H(s,t)A1(ds)Aq(dt)(A.1)
equals 0, where Ayy(ds,dt) = P{X € [s,5+ds),Y € [t,t + di)|X > s,V > ¢},
H(ds,t) = P{X € [s,s +ds),Y > t}, and H(s,dt) = P{X > s,V € [t,t + dt)}.
At first, note that by the assumption of independence of (X,Y) and (C, C3),

P{X €[s,s+ds),Y >t} =P{X € [s,5+4ds),Y > ¢|C; > 5,Cp >t}
={P(C1 > 5,C2 > t)} ' P{X € [s,5+ds),Y >1,C, > X,Cy >t}
= {P(C, > 5,Cy > 1)} H(ds, 1).
Thus, under the null hypothesis of independence of X and Y,
H(ds,t) = P{X €[s,s+ds)|X >s,YV >1)H(s,1)
= P{X e[s,s+ds)|X > s}H(s,1).
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So, H(ds,t) = H(s,t)A1(ds). Similarly, H(s,dt) = H(s,t)Ag(dt). Also, under
the null hypothesis of independence of X and Y, it can be easily shown to be
A11(ds,dt) = Ay(ds)Aa(dt). Therefore, the (A.1) becomes zero. Furthermore,
to show Acov{Bj(z),Ca(y)} = 0, it suffices to show that the integrand of the
equation Acov{B;(z),Cs(y)} in Appendix of Wang and Wells (1997),

P{X > 5,Y €t,t+dt),6Y =1} — H(s,t)Az(dt) (A.2)

equals 0. Noting that by the assumption of (X,Y) and (C7,C5) and under the

null hypothesis of independence of X and Y,

P{X >s Y c[tt+dt),0¥ =1} = P{X>sY €, t+dt),C1>5Cy >t}
= P{Y €[t,t +dt)|[Y > t}H(s,t),

the (A.2) equals to be zero. Similarly, Acov{B2(y),Ci(z)} = 0. O
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