• Title/Summary/Keyword: Statistical distributions

Search Result 1,007, Processing Time 0.028 seconds

Tests Based on Skewness and Kurtosis for Multivariate Normality

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.361-375
    • /
    • 2015
  • A measure of skewness and kurtosis is proposed to test multivariate normality. It is based on an empirical standardization using the scaled residuals of the observations. First, we consider the statistics that take the skewness or the kurtosis for each coordinate of the scaled residuals. The null distributions of the statistics converge very slowly to the asymptotic distributions; therefore, we apply a transformation of the skewness or the kurtosis to univariate normality for each coordinate. Size and power are investigated through simulation; consequently, the null distributions of the statistics from the transformed ones are quite well approximated to asymptotic distributions. A simulation study also shows that the combined statistics of skewness and kurtosis have moderate sensitivity of all alternatives under study, and they might be candidates for an omnibus test.

A note on the test for the covariance matrix under normality

  • Park, Hyo-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • In this study, we consider the likelihood ratio test for the covariance matrix of the multivariate normal data. For this, we propose a method for obtaining null distributions of the likelihood ratio statistics by the Monte-Carlo approach when it is difficult to derive the exact null distributions theoretically. Then we compare the performance and precision of distributions obtained by the asymptotic normality and the Monte-Carlo method for the likelihood ratio test through a simulation study. Finally we discuss some interesting features related to the likelihood ratio test for the covariance matrix and the Monte-Carlo method for obtaining null distributions for the likelihood ratio statistics.

Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.519-531
    • /
    • 2017
  • We consider goodness-of-fit test statistics for Weibull distributions when data are randomly censored and the parameters are unknown. Koziol and Green (Biometrika, 63, 465-474, 1976) proposed the $Cram\acute{e}r$-von Mises statistic's randomly censored version for a simple hypothesis based on the Kaplan-Meier product limit of the distribution function. We apply their idea to the other statistics based on the empirical distribution function such as the Kolmogorov-Smirnov and Liao and Shimokawa (Journal of Statistical Computation and Simulation, 64, 23-48, 1999) statistics. The latter is a hybrid of the Kolmogorov-Smirnov, $Cram\acute{e}r$-von Mises, and Anderson-Darling statistics. These statistics as well as the Koziol-Green statistic are considered as test statistics for randomly censored Weibull distributions with estimated parameters. The null distributions depend on the estimation method since the test statistics are not distribution free when the parameters are estimated. Maximum likelihood estimation and the graphical plotting method with the least squares are considered for parameter estimation. A simulation study enables the Liao-Shimokawa statistic to show a relatively high power in many alternatives; however, the null distribution heavily depends on the parameter estimation. Meanwhile, the Koziol-Green statistic provides moderate power and the null distribution does not significantly change upon the parameter estimation.

Risk Characteristic on Fat-tails of Return Distribution: An Evidence of the Korean Stock Market

  • Eom, Cheoljun
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.4
    • /
    • pp.37-48
    • /
    • 2020
  • Purpose - This study empirically investigates whether the risk property included in fat-tails of return distributions is systematic or unsystematic based on the devised statistical methods. Design/methodology/approach - This study devised empirical designs based on two traditional methods: principal component analysis (PCA) and the testing method of portfolio diversification effect. The fatness of the tails in return distributions is quantitatively measured by statistical probability. Findings - According to the results, the risk property in the fat-tails of return distributions has the economic meanings of eigenvalues having a value greater than 1 through PCA, and also systematic risk that cannot be removed through portfolio diversification. In other words, the fat-tails of return distributions have the properties of the common factors, which may explain the changes of stock returns. Meanwhile, the fatness of the tails in the portfolio return distributions shows the asymmetric relationship of common factors on the tails of return distributions. The negative tail in the portfolio return distribution has a much closer relation with the property of common factors, compared to the positive tail. Research implications or Originality - This empirical evidence may complement the existing studies related to tail risk which is utilized in pricing models as a common factor.

IMAGE SEGMENTATION BASED ON THE STATISTICAL VARIATIONAL FORMULATION USING THE LOCAL REGION INFORMATION

  • Park, Sung Ha;Lee, Chang-Ock;Hahn, Jooyoung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.129-142
    • /
    • 2014
  • We propose a variational segmentation model based on statistical information of intensities in an image. The model consists of both a local region-based energy and a global region-based energy in order to handle misclassification which happens in a typical statistical variational model with an assumption that an image is a mixture of two Gaussian distributions. We find local ambiguous regions where misclassification might happen due to a small difference between two Gaussian distributions. Based on statistical information restricted to the local ambiguous regions, we design a local region-based energy in order to reduce the misclassification. We suggest an algorithm to avoid the difficulty of the Euler-Lagrange equations of the proposed variational model.

Cubic normal distribution and its significance in structural reliability

  • Zhao, Yan-Gang;Lu, Zhao-Hui
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.263-280
    • /
    • 2008
  • Information on the distribution of the basic random variable is essential for the accurate analysis of structural reliability. The usual method for determining the distributions is to fit a candidate distribution to the histogram of available statistical data of the variable and perform approximate goodness-of-fit tests. Generally, such candidate distribution would have parameters that may be evaluated from the statistical moments of the statistical data. In the present paper, a cubic normal distribution, whose parameters are determined using the first four moments of available sample data, is investigated. A parameter table based on the first four moments, which simplifies parameter estimation, is given. The simplicity, generality, flexibility and advantages of this distribution in statistical data analysis and its significance in structural reliability evaluation are discussed. Numerical examples are presented to demonstrate these advantages.

On Statistical Estimation of Multivariate (Vector-valued) Process Capability Indices with Bootstraps)

  • Cho, Joong-Jae;Park, Byoung-Sun;Lim, Soo-Duck
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.697-709
    • /
    • 2001
  • In this paper we study two vector-valued process capability indices $C_{p}$=($C_{px}$, $C_{py}$ ) and C/aub pm/=( $C_{pmx}$, $C_{pmy}$) considering process capability indices $C_{p}$ and $C_{pm}$ . First, two asymptotic distributions of plug-in estimators $C_{p}$=($C_{px}$, $C_{py}$ ) and $C_{pm}$ =) $C_{pmx}$, $C_{pmy}$) are derived.. With the asymptotic distributions, we propose asymptotic confidence regions for our indices. Next, obtaining the asymptotic distributions of two bootstrap estimators $C_{p}$=($C_{px}$, $C_{py}$ )and $C_{pm}$ =( $C_{pmx}$, $C_{pmy}$) with our bootstrap algorithm, we will provide the consistency of our bootstrap for statistical inference. Also, with the consistency of our bootstrap, we propose bootstrap asymptotic confidence regions for our indices. (no abstract, see full-text)see full-text)e full-text)

  • PDF

A Note on the Characteristic Function of Multivariate t Distribution

  • Song, Dae-Kun;Park, Hyoung-Jin;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • This study derives the characteristic functions of (multivariate/generalized) t distributions without contour integration. We extended Hursts method (1995) to (multivariate/generalized) t distributions based on the principle of randomization and mixtures. The derivation methods are relatively straightforward and are appropriate for graduate level statistics theory courses.

A New Family of Semicircular Models: The Semicircular Laplace Distributions

  • Ahn, Byoung-Jin;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.775-781
    • /
    • 2008
  • It is developed that a family of the semicircular Laplace distributions for modeling semicircular data by simple projection method. Mathematically it is simple to simulate observations from a semicircular Laplace distribution. We extend it to the l-axial Laplace distribution by a simple transformation for modeling any arc of arbitrary length. Similarly we develop the l-axial log-Laplace distribution based on the log-Laplace distribution. A bivariate version of l-axial Laplace distribution is also developed.

Some Control Procedures Useful for One-sieded Asymmetrical Distributions

  • Park, Chang-Soon
    • Journal of the Korean Statistical Society
    • /
    • v.14 no.2
    • /
    • pp.76-86
    • /
    • 1985
  • Shewhart X-chart, which is most widely used in practice, is shown to be inappropriate for the cases where the process distribution is one-sided asymmetrical, and thus some nonparametric Shewhart type charts are developed instead. These schemes may be applied usefully when there is not enough information in determining the process distribution. The average run lengths are obtained to compare the efficiency of control charts for various shifts of the location parameter and for some typical one-sided asymmetrical distributions.

  • PDF