• Title/Summary/Keyword: Statistical Methodology

Search Result 1,312, Processing Time 0.024 seconds

Study on the Effects of Shop Choice Properties on Brand Attitudes: Focus on Six Major Coffee Shop Brands (점포선택속성이 브랜드 태도에 미치는 영향에 관한 연구: 6개 메이저 브랜드 커피전문점을 중심으로)

  • Yi, Weon-Ho;Kim, Su-Ok;Lee, Sang-Youn;Youn, Myoung-Kil
    • Journal of Distribution Science
    • /
    • v.10 no.3
    • /
    • pp.51-61
    • /
    • 2012
  • This study seeks to understand how the choice of a coffee shop is related to a customer's loyalty and which characteristics of a shop influence this choice. It considers large-sized coffee shops brands whose market scale has gradually grown. The users' choice of shop is determined by price, employee service, shop location, and shop atmosphere. The study investigated the effects of these four properties on the brand attitudes of coffee shops. The effects were found to vary depending on users' characteristics. The properties with the largest influence were shop atmosphere and shop location Therefore, the purpose of the study was to examine the properties that could help coffee shops get loyal customers, and the choice properties that could satisfy consumers' desires The study examined consumers' perceptions of shop properties at selection of coffee shop and the difference between perceptual difference and coffee brand in order to investigate customers' desires and needs and to suggest ways that could supply products and service. The research methodology consisted of two parts: normative and empirical research, which includes empirical analysis and statistical analysis. In this study, a statistical analysis of the empirical research was carried out. The study theoretically confirmed the shop choice properties by reviewing previous studies and performed an empirical analysis including cross tabulation based on secondary material. The findings were as follows: First, coffee shop choice properties varied by gender. Price advantage influenced the choice of both men and women; men preferred nearer coffee shops where they could buy coffee easily and more conveniently than women did. The atmosphere of the coffee shop had the greatest influence on both men and women, and shop atmosphere was thought to be the most important for age analysis. In the past, customers selected coffee shops solely to drink coffee. Now, they select the coffee shop according to its interior, menu variety, and atmosphere owing to improved quality and service of coffee shop brands. Second, the prices of the brands did not vary much because the coffee shops were similarly priced. The service was thought to be more important and to elevate service quality so that price and employee service and other properties did not have a great influence on shop choice. However, those working in the farming, forestry, fishery, and livestock industries were more concerned with the price than the shop atmosphere. College and graduate school students were also affected by inexpensive price. Third, shop choice properties varied depending on income. The shop location and shop atmosphere had a greater influence on shop choice. The customers in an income bracket of less than 2 million won selected low-price coffee shops more than those earning 6 million won or more. Therefore, price advantage had no relation with difference in income. The higher income group was not affected by employee service. Fourth, shop choice properties varied depending on place. For instance, customers at Ulsan were the most affected by the price, and the ones at Busan were the least affected. The shop location had the greatest influence among all of the properties. Among the places surveyed, Gwangju had the least influence. The alternate use of space in a coffee shop was thought to be important in all the cities under consideration. The customers at Ulsan were not affected by employee service, and they selected coffee shops according to quality and preference of shop atmosphere. Lastly, the price factor was found to be a little higher than other factors when customers frequently selected brands according to shop properties. Customers at Gwangju reacted to discounts more than those in other cities did, and the former gave less priority to the quality and taste of coffee. Brand preference varied depending on coffee shop location. Customers at Busan selected brands according to the coffee shop location, and those at Ulsan were not influenced by employee kindness and specialty. The implications of this study are that franchise coffee shop businesses should focus on customers rather than aggressive marketing strategies that increase the number of coffee shops. Thus, they should create an environment with a good atmosphere and set up coffee shops in places that customers have good access to. This study has some limitations. First, the respondents were concentrated in metropolitan areas. Secondary data showed that the number of respondents at Seoul was much more than that at Gyeonggi-do. Furthermore, the number of respondents at Gyeonggi-do was much more than those at the six major cities in the nation. Thus, the regional sample was not representative enough of the population. Second, respondents' ratio was used as a measurement scale to test the perception of shop choice properties and brand preference. The difficulties arose when examining the relation between these properties and brand preference, as well as when understanding the difference between groups. Therefore, future research should seek to address some of the shortcomings of this study: If the coffee shops are being expanded to local areas, then a questionnaire survey of consumers at small cities in local areas shall be conducted to collect primary material. In particular, variables of the questionnaire survey shall be measured using Likert scales in order to include perception on shop choice properties, brand preference, and repurchase. Therefore, correlation analysis, multi-regression, and ANOVA shall be used for empirical analysis and to investigate consumers' attitudes and behavior in detail.

  • PDF

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.