• Title/Summary/Keyword: Statistical Cubic Model

Search Result 16, Processing Time 0.02 seconds

A Lattice Statistical Thermodynamic Study of Bilayer Amphiphile Molecules

  • Pak, Young-Shang;Pak, Hyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.438-446
    • /
    • 1990
  • In order to elucidate conformational properties of bilayer semiflexible amphiphile molecules, we derive a expression of free energy separation with respect to bilayer width, and segment density profiles on the basis of cubic lattice model. Our result shows that at the moderate surface coverage region (i.e., ${\sigma}$ < 0.35), bilayer system tends to have thermodynamically favorable bilayer width corresponding to free energy minimum condition resulting from the major contribution of attractive interaction between chain segments. However such a favorable bilayer width do not occur in the region of high surface converage (i.e., ${\sigma}$> 0.4) where repulsive interaction between chain segments is considered to be dominant.

Optimization of HPLC-tandem mass spectrometry for chlortetracycline using response surface analysis

  • Bae, Hyokwan;Jung, Hee-Suk;Jung, Jin-Young
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.309-315
    • /
    • 2018
  • Chlortetracycline (CTC) is one of the most important compounds in antibiotic production, and its distribution has been widely investigated due to health and ecological concerns. This study presents systematic approach to optimize the high-performance liquid chromatography-tandem mass spectrometry for analyzing CTC in a multiple reaction monitoring mode ($479{\rightarrow}462m/z$). One-factor-at-a-time (OFAT) test with response surface analysis (RSA) was used as optimization strategy. In OFAT tests, the fragmentor voltage, collision energy, and ratio of acetonitrile in the mobile phase were selected as major factors for RSA. The experimental conditions were determined using a composite in cube design (CCD) to maximize the peak area. As a result, the partial cubic model precisely predicted the peak area response with high statistical significance. In the model, the (solvent composition) and (collision $energy^2$) terms were statistically significant at the 0.1 ${\alpha}$-level, while the two-way interactions of the independent variables were negligible. By analyzing the model equation, the optimum conditions were derived as 114.9 V, 15.7 eV, and 70.9% for the fragmentor voltage, collision energy, and solvent composition, respectively. The RSA, coupled with the CCD, offered a comprehensive understanding of the peak area that responds to changes in experimental conditions.

Numerical Analysis of Flow Interference at Discontinuity Junction of fracture Network (단열교차점에서 유체간섭에 관한 수치적 고찰)

  • 박영진;이강근;이승구
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.111-115
    • /
    • 1997
  • Discrete fracture model has become one of the alternatives for the classical continuum model to simulate the irregular aspects of the fluid flow and the solute transport in fractured rocks. It is based on the assumptions that the discharge in a single fracture is proportional to the cube of the aperture and the fractured rock can be represented by the statistical assemblage of such single fractures. This study is intended to evaluate the effect of the fracture junction on the cubic law. Numerical solution of flow in junction system was obtained by using the Boundary-Fitted Coordinate System (BFCS) method. Results with different intersection angles in crossing fractures show that the geometry of the junction affects the discharge pattern under the same simulation conditions. Therefore, strict numerical and experimental examinations on this subject are required.

  • PDF

A Study of the Influence of Void Geometry on Fracture Closure and Permeability (간극의 기하학적 특성이 절리의 수직변형 및 투수성에 미치는 영향에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.304-311
    • /
    • 2002
  • This study reports the influence of vocid geometry on fracture closure and permeability from numerical experiments. As the aperture distributions of rock fractures are characterized by statistical methods, synthetic fractures have successfully been simulated in this way. Based on the generated fracture models, models for fracture closure and flow calculation have been developed. A fracture closure model has been developed by considering the asperity compression and half-space deformation, and flow calculations have been performed using a finite difference method adopting a local cubic law. The results of numerical experiments have shown that the increase in the aperture spatial correlation leads the fracture closure and the decrease in fracture permeability to increase. Also, it has been indicated that there is an implicit relation between fracture normal stiffness and permeability. The importance of this study is to enhance the understanding the hydro-mechanical behavior of fractured rock massed due to engineering projects.

Development of a Pipe Network Fluid-Flow Modelling Technique for Porous Media based on Statistical Percolation Theory (통계적 확산이론에 기초한 다공질체의 유동관망 유동해석 기법 개발)

  • Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.447-455
    • /
    • 2013
  • A micro-mechanical pipe network model with the shape of a cube was developed to simulate the behavior of fluid flow through a porous medium. The fluid-flow mechanism through the cubic pipe network channels was defined mainly by introducing a well-known percolation theory (Stauffer and Aharony, 1994). A non-uniform flow generally appeared because all of the pipe diameters were allocated individually in a stochastic manner based on a given pore-size distribution curve and porosity. Fluid was supplied to one surface of the pipe network under a certain driving pressure head and allowed to percolate through the pipe networks. A percolation condition defined by capillary pressure with respect to each pipe diameter was applied first to all of the network pipes. That is, depending on pipe diameter, the fluid may or may not penetrate a specific pipe. Once pore pressures had reached equilibrium and steady-state flow had been attained throughout the network system, Darcy's law was used to compute the resultant permeability. This study investigated the sensitivity of network size to permeability calculations in order to find out the optimum network size which would be used for all the network modelling in this study. Mean pore size and pore size distribution curve obtained from field are used to define each of pipe sizes as being representative of actual oil sites. The calculated and measured permeabilities are in good agreement.

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.