• Title/Summary/Keyword: Statistical Channel

Search Result 357, Processing Time 0.025 seconds

Channel Selection Scheme using Statistical Properties in the Cognitive Radio Networks (인지무선 네트워크에서 통계적 특성을 이용한 채널선택기법)

  • Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1767-1769
    • /
    • 2011
  • In a CR (cognitive radio) network, channel selection is one of the important issues for the efficient channel utilization. When the CR user exploits the spectrum of primary network, the interference to the primary network should be minimized. In this paper, we propose a spectrum hole prediction based channel selection scheme to minimize the interference to the primary network. To predict spectrum hole, statistic properties of primary user's traffic is used. By using the predicted spectrum hole, channel is selected and it can reduce the possibility of interference to the primary user and increase the efficiency of spectrum utilization. The performance of proposed channel selection scheme is evaluated by the computer simulation.

The Factors Affecting Preference and Image of YouTube Beauty Channels (유튜브 뷰티 채널의 선호도와 이미지에 미치는 영향 요인)

  • Kong, Ling Yu;Kim, Injai
    • The Journal of Information Systems
    • /
    • v.28 no.3
    • /
    • pp.25-38
    • /
    • 2019
  • Purpose This study aims to empirically analyze which factors affect image and preference of YouTube beauty channels. Some practical and academic implications are presented through empirical research. Design/methodology/approach For this purpose, the six affecting factors were suggested on the basis of previous studies. We proposed image quality, user attitude, empirical value, economics, and awareness as independent variables and channel image and channel preference as dependent variables in order to investigate the causal relationships among the research variables. We surveyed 311 users who had experience in using YouTube Beauty channel and analyzed the data by using a statistical package. Findings This study showed that the channel image has a partial mediating effect between the affecting variables and the channel preference. The results provided some insights and information to increase the number of subscribers and site views. Several suggestions were carefully made.

Hull Form Development of 32-ft Class Leisure Boat by Statistical Analysis of Actual Ships (실적선 통계분석을 이용한 32피트급 레저보트 선형개발)

  • Jeong, Uh-Cheul;Park, Je-Woong;Kim, Kyu-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.58-63
    • /
    • 2008
  • A 32-ft class leisure boat was newly developed using statistical analysis of actual ships. Resistance performances were investigated by testing models in a high-speed circulating water channel, and with the CFD method. The effects of a trim tab and of a fin attached at the hull side were studied together. Wave patterns were observed to clarify the relationship between resistance performance and wave characteristics. It was found that a trim tab and a side fin play a role in increasing resistance performance within a certain velocity range.

Development of Apple Color Grading System by Statistical Color Image Processing

  • Lim, Dong-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.325-332
    • /
    • 2003
  • This study was to develop a system for grading apples by their color using statistical image processing. T-test was used to detect edges in apple images and the chain code method was used for contour coding. The histogram and mean gray level of each RGB channel in a ring-shaped region was used to compare apple colors to reference apple color.

A Novel Broadband Channel Estimation Technique Based on Dual-Module QGAN

  • Li Ting;Zhang Jinbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1369-1389
    • /
    • 2024
  • In the era of 6G, the rapid increase in communication data volume poses higher demands on traditional channel estimation techniques and those based on deep learning, especially when processing large-scale data as their computational load and real-time performance often fail to meet practical requirements. To overcome this bottleneck, this paper introduces quantum computing techniques, exploring for the first time the application of Quantum Generative Adversarial Networks (QGAN) to broadband channel estimation challenges. Although generative adversarial technology has been applied to channel estimation, obtaining instantaneous channel information remains a significant challenge. To address the issue of instantaneous channel estimation, this paper proposes an innovative QGAN with a dual-module design in the generator. The adversarial loss function and the Mean Squared Error (MSE) loss function are separately applied for the parameter updates of these two modules, facilitating the learning of statistical channel information and the generation of instantaneous channel details. Experimental results demonstrate the efficiency and accuracy of the proposed dual-module QGAN technique in channel estimation on the Pennylane quantum computing simulation platform. This research opens a new direction for physical layer techniques in wireless communication and offers expanded possibilities for the future development of wireless communication technologies.

Thin Film Effects on Side Channel Signals (부 채널 신호에 대한 박막의 영향)

  • Sun, Y.B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • Even if transmissions through normal channel between ubiquitous devices and terminal readers are encrypted, any extra sources of information retrieved from encrypting module can be exploited to figure out the key parameters, so called side channel attack. Since side channel attacks are based on statistical methods, making side channel signal weak or complex is the proper solution to prevent the attack. Among many countermeasures, shielding the electromagnetic signal and adding noise to the EM signal were examined by applying different thicknesses of thin films of ferroelectric (BTO) and conductors (copper and gold). As a test vehicle, chip antenna was utilized to see the change in radiation characteristics: return loss and gain. As a result, the ferroelectric BTO showed no recognizable effect on both shielding and adding noise. Cu thin film showed increasing shielding effect with thickness. Nanometer Au exhibited possibility in adding noise by widening of bandwidth and red shifting of resonating frequencies.

Operating Criteria of Core Exit Temperature in Nuclear Power Plant with using Channel Statistical Allowance (총채널 불확실도를 적용한 원전 노심출구온도의 운전가능 판정기준)

  • Sung, Je Joong;Joo, Yoon Duk;Ha, Sang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.166-171
    • /
    • 2014
  • Nuclear power plants are equipped with the reactor trip system (RTS) and the engineered safety features actuation system (ESFAS) to improve safety on the normal operation. In the event of the design basis accident (DBA), a various of post accident monitor(PAM)systems support to provide important details (e.g. Containment pressure, temperature and pressure of reactor cooling system and core exit temperature) to determine action of main control room (MCR). Operator should be immediately activated for the accident mitigation with the information. Especially, core exit temperature is a critical parameter because the operating mode converts from normal mode to emergency mode when the temperature of core exit reaches $649^{\circ}C$. In this study, uncertainty which was caused by exterior environment, characteristic of thermocouple/connector and accuracy of calibrator/indicator was evaluated in accordance with ANSI-ISA 67.04. The square root of the sum of square (SRSS) methodology for combining uncertainty terms that are random and independent was used in the synthesis. Every uncertainty that may exist in the hardware which is used to measure the core exit temperature was conservatively applied and the associative relation between the elements of uncertainty was considered simultaneously. As a result of uncertainty evaluation, the channel statistical allowance (CSA) of single channel of core exit temperature was +1.042%Span. The range of uncertainty, -0.35%Span ($-4.05^{\circ}C$) ~ +2.08%Span($24.25^{\circ}C$), was obtained as the operating criteria of core exit temperature.

Fault Diagnosis of Bearing Based on Convolutional Neural Network Using Multi-Domain Features

  • Shao, Xiaorui;Wang, Lijiang;Kim, Chang Soo;Ra, Ilkyeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1610-1629
    • /
    • 2021
  • Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.

Design and Performance Gain Evaluation of a Multi-Rank Codebook Utilizing Statistical Properties of the Spatial Channel Model (공간 채널 모델의 통계적 특성을 반영한 다중 랭크 코드북의 설계 및 성능 이득 평가)

  • Kim, Changhyeon;Sung, Wonjin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.723-731
    • /
    • 2016
  • A core technological base to provide enhanced data rates required by 5G mobile wireless communications is the improved bandwidth efficiency using massive multiple-input multiple-output (MIMO) transmission. MIMO transmission requires the channel estimation using the channel state information reference signaling (CSI-RS) and appropriate beamforming, thus the design of the codebook defining proper beamforming vectors is an important issue. In this paper, we propose a multi-rank codebook based on the discrete Fourier transform (DFT) matrix, by utilizing statistical properties of the channel generated by the spatial channel model (SCM). The proposed method includes a structural change of the precoding matrix indicator (PMI) by considering the phase difference distributions between adjacent antenna elements, as well as the selected codevector characteristics of each transmission layer. Performance gain of the proposed method is evaluated and verified by making the performance comparison to the 3GPP standard codebooks adopted by Long-Term Evolution (LTE) systems.

The Gauss, Rayleigh and Nakagami Probability Density Distribution Based on the Decreased Exponential Probability Distribution (감쇄지수함수 확률분포에 의한 가우스, 레일레이, 나카가미 확률 밀도 분포)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.59-68
    • /
    • 2017
  • Random process plays a major role in wireless communication system to analytically derive the probability distribution function of the various statistical distribution. In this paper, we derive the decreasing function of the exponential distribution under the given condition which is expressed as wireless channel condition. The probability distribution function of Gaussian, Laplacian, Rayleigh and Nakagami distribution are also derived. Extensive simulation results of these statistical distributions are provided to prove that random process has a significant role in the wireless communications. In addition, the Rayleigh and Rician channels show specific examples of visible distance communication and invisible distance channel environment. This paper is motivated by that we assume a block fading channel model, where the channel is constant during a transmission block and changes independently between consecutive transmission block, can achieve a better performance in high SNR regime with i.i.d channel. This algorithm for realizing these transforms can be applied to the Kronecker MIMO channel.